放牧
草原
生态化学计量学
食草动物
土壤水分
磷
农学
氮气
生物
营养物
化学
生态学
有机化学
作者
Rui‐Peng Yu,Weiping Zhang,Dario Fornara,Long Li
标识
DOI:10.1111/1365-2664.13808
摘要
Abstract Grazing by ungulate herbivores can greatly alter nitrogen ([N]) and phosphorus ([P]) concentrations in plants and soils. It is not clear, however, how grazing might affect N:P co‐limitation in grasslands depending on soil N and P availability. Here we selected 173 peer‐reviewed studies, which measured 12 key variables associated with changes in [N], [P] and N:P ratios (i.e. N:P stoichiometry) in soils and plants in the presence or absence of herbivore grazing. Subsequently, we addressed the magnitude and direction of grazing effects on these variables using a meta‐analysis approach. Grazing increased leaf [N] and [P] but decreased total and available soil [N] and [P]. Grazing also increased leaf N:P ratios while decreasing root and total soil N:P ratios. The response ratio (RR) of leaf N:P was negatively correlated with RR of plant‐available soil [P] and positively correlated with RR of available soil N:P ratio (rather than with RR of total soil N:P). Intensive grazing (e.g. heavy grazing or long‐term grazing) had in general more positive effects on plant N:P stoichiometry and negative effects on soil N:P stoichiometry than light grazing. Responses of plant‐soil N:P stoichiometry to grazing greatly varied depending on plant functional group identity, plant organizational level (i.e. species and community) and grassland type. Synthesis and applications . Our study suggests that understanding changes in available soil N:P stoichiometry (rather than total soil N:P) in response to grazing is crucial to predict nutrient co‐limitation in grassland biomes. Our findings show that P is more important for plant growth than generally thought due to greater reduction of plant‐available soil [P] under grazing. A better mechanistic understanding of the relationships between plant and available soil N:P stoichiometry under grazing will greatly help improve the sustainability of natural and semi‐natural grassland ecosystems.
科研通智能强力驱动
Strongly Powered by AbleSci AI