Spatially Resolved Determination of Metallization-Induced Recombination Losses Using Photoluminescence Imaging

光致发光 同质性(统计学) 样品(材料) 计算机科学 重组 材料科学 分析化学(期刊) 算法 物理 光电子学 化学 热力学 机器学习 色谱法 生物化学 基因
作者
David Herrmann,David R. C. Falconi,Sabrina Lohmüller,Daniel Ourinson,Andreas Fell,Hannes Höffler,Andreas A. Brand,Andreas Wolf
出处
期刊:IEEE Journal of Photovoltaics [Institute of Electrical and Electronics Engineers]
卷期号:11 (1): 174-184 被引量:8
标识
DOI:10.1109/jphotov.2020.3038336
摘要

Metallization induced recombination losses are one dominant loss mechanism for current industrial solar cells. A precise determination of these losses is important for contacting technology optimization, as well as precise solar cell modeling. Usually, for state-of-the-art approaches to determine j 0,met , it is assumed that the samples itself exhibit spatially uniform properties (e.g., carrier lifetime or sheet resistance) or that the used reference samples are identical to the metallized samples. Finally, in most cases, only one global j 0,met -value for the entire sample is given, neglecting possible spatial inhomogeneities. In this article, we mostly eliminate the necessity for the assumptions of perfect sample homogeneity by means of an interpolation scheme of the photoluminescence (PL) signal. Thereby, we can predict the PL signal of a virtually nonmetallized test field with a relative standard deviation of about σ ≈ 0.7%. Additionally, we determine j 0,met for specific test fields at different positions on the sample and correlate the results to the local emitter sheet resistance R sh , the local peak firing temperature of the sample during the fast firing process T peak , and the test field finger spacing d. For our samples, a reduction of d from d = 1000 μm to d = 200 μm leads to a reduction of j 0,met by up to 18%. This strong effect is physically unexpected and so far not considered by the state-of-the-art approach, frequently performed in the photovoltaic community. Further, we perform a sensitivity and error analysis which reveals that we are able to determine j 0,met within an estimated accuracy between 15% and 18%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
respectzero完成签到,获得积分10
刚刚
机灵班完成签到,获得积分10
2秒前
靓丽藏花完成签到 ,获得积分10
2秒前
HOMO完成签到,获得积分10
2秒前
3秒前
研友_Ljqal8完成签到,获得积分10
4秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
cc应助科研通管家采纳,获得10
5秒前
7秒前
7秒前
8秒前
小余同学发布了新的文献求助10
8秒前
9秒前
Valiant发布了新的文献求助10
10秒前
HOMO发布了新的文献求助10
10秒前
薄雪草发布了新的文献求助10
11秒前
Ribes发布了新的文献求助30
14秒前
pancake发布了新的文献求助100
15秒前
彭于晏应助菜就多练采纳,获得10
16秒前
哦哦哦完成签到,获得积分10
17秒前
19秒前
19秒前
19秒前
21秒前
典雅的小萱完成签到,获得积分10
21秒前
我要发sci发布了新的文献求助10
23秒前
24秒前
谨慎凌柏完成签到 ,获得积分20
24秒前
高高的洋葱完成签到,获得积分10
24秒前
SciGPT应助dddnnn采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287942
求助须知:如何正确求助?哪些是违规求助? 4439954
关于积分的说明 13823533
捐赠科研通 4322189
什么是DOI,文献DOI怎么找? 2372404
邀请新用户注册赠送积分活动 1367911
关于科研通互助平台的介绍 1331495