A novel methylation signature predicts radiotherapy sensitivity in glioma

放射治疗 灵敏度(控制系统) DNA甲基化 签名(拓扑) 胶质瘤 甲基化 计算生物学 计算机科学 生物信息学 生物 医学 癌症研究 内科学 基因 遗传学 基因表达 数学 工程类 电子工程 几何学
作者
Yuemei Feng,Guanzhang Li,Zhongcheng Shi,Xu Yan,Zhiliang Wang,Haoyu Jiang,Ye Chen,Renpeng Li,You Zhai,Yuanhao Chang,Wei Zhang,Fang Yuan
出处
期刊:Scientific Reports [Springer Nature]
卷期号:10 (1) 被引量:8
标识
DOI:10.1038/s41598-020-77259-9
摘要

Glioblastoma (GBM) is the most common and malignant cancer of the central nervous system, and radiotherapy is widely applied in GBM treatment; however, the sensitivity to radiotherapy varies in different patients. To solve this clinical dilemma, a radiosensitivity prediction signature was constructed in the present study based on genomic methylation. In total, 1044 primary GBM samples with clinical and methylation microarray data were involved in this study. LASSO-COX, GSVA, Kaplan-Meier survival curve analysis, and COX regression were performed for the construction and verification of predictive models. The R programming language was used as the main tool for statistical analysis and graphical work. Via the integration analysis of methylation and the survival data of primary GBM, a novel prognostic and radiosensitivity prediction signature was constructed. This signature was found to be stable in prognosis prediction in the TCGA and CGGA databases. The possible mechanism was also explored, and it was found that this signature is closely related to DNA repair functions. Most importantly, this signature could predict whether GBM patients could benefit from radiotherapy. In summary, a radiosensitivity prediction signature for GBM patients based on five methylated probes was constructed, and presents great potential for clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YoungDoctor完成签到,获得积分10
1秒前
3秒前
fbbggb完成签到,获得积分10
4秒前
乐正念云发布了新的文献求助30
6秒前
后知后觉完成签到,获得积分10
6秒前
请叫我托蒂完成签到,获得积分20
8秒前
鹿飞扬完成签到,获得积分10
9秒前
10秒前
可靠的凌波关注了科研通微信公众号
12秒前
14秒前
du发布了新的文献求助10
14秒前
所所应助XFF采纳,获得10
16秒前
16秒前
lpt完成签到 ,获得积分10
17秒前
泠风来完成签到,获得积分10
17秒前
qyang发布了新的文献求助10
19秒前
忧郁绣连发布了新的文献求助10
19秒前
只想睡大觉完成签到,获得积分10
20秒前
元谷雪应助多肉考拉采纳,获得10
21秒前
22秒前
嘟嘟大魔王完成签到,获得积分20
22秒前
初心完成签到,获得积分10
24秒前
smm完成签到 ,获得积分10
26秒前
26秒前
27秒前
QIN发布了新的文献求助10
28秒前
29秒前
30秒前
30秒前
31秒前
locker完成签到 ,获得积分10
32秒前
32秒前
insane发布了新的文献求助30
33秒前
35秒前
yyfdqms完成签到,获得积分10
35秒前
旭琦完成签到 ,获得积分10
36秒前
39秒前
我是老大应助呆萌冰绿采纳,获得10
39秒前
42秒前
英俊的铭应助隐形之玉采纳,获得10
42秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137511
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7786944
捐赠科研通 2444783
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625770
版权声明 601023