极值理论
广义帕累托分布
估计员
数学
计量经济学
遍历性
广义极值分布
参数统计
渐近分布
一致性(知识库)
正态性
统计
几何学
作者
Enzo D’Innocenzo,André Lucas,Bernd Schwaab,Xin Zhang
标识
DOI:10.1080/07350015.2023.2260439
摘要
We propose a dynamic semi-parametric framework to study time variation in tail parameters. The framework builds on the Generalized Pareto Distribution (GPD) for modeling peaks over thresholds as in Extreme Value Theory, but casts the model in a conditional framework to allow for time-variation in the tail parameters. We establish parameter regions for stationarity and ergodicity and for the existence of (unconditional) moments and consider conditions for consistency and asymptotic normality of the maximum likelihood estimator for the deterministic parameters in the model. Two empirical datasets illustrate the usefulness of the approach: daily U.S. equity returns, and 15-minute euro area sovereign bond yield changes.
科研通智能强力驱动
Strongly Powered by AbleSci AI