Initiating a wide-temperature-window yarn zinc ion battery by a highly conductive iongel

双氰胺 材料科学 电解质 电化学窗口 电导率 电池(电) 离子液体 电化学 离子电导率 复合材料 电极 化学工程 化学 有机化学 量子力学 物理 工程类 物理化学 催化作用 功率(物理)
作者
Jie Liu,Ningyuan Nie,Jiaqi Wang,Mengmeng Hu,Jiaheng Zhang,Mingyu Li,Yan Huang
出处
期刊:Materials Today Energy [Elsevier]
卷期号:16: 100372-100372 被引量:29
标识
DOI:10.1016/j.mtener.2019.100372
摘要

Yarn batteries are promising candidates in portable, flexible and wearable electronics due to its tiny volume, good flexibility and maximum compatibility with textile. However, the-state-of-the-art yarn battery using aqueous electrolyte cannot fulfill the requirement of working normally in extreme weather conditions, such as harsh winters and searing summers. In this research, a quasi-solid-state iongel electrolyte with a high ionic conductivity of 0.016 S cm−1 was synthesized by polymerizing 1-vinyl-3-ethylimidazolium dicyanamide ([Veim][DCA]) and N, N′-methylenebisacrylamide (NNMBA) in zinc acetate (Zn(CH3COO)2) dissolved 1-ethyl-3-methylimidazolium dicyanamide ([Emim][DCA]). A flexible zinc//manganese-dioxide (Zn//MnO2) yarn battery based on this iongel delivers high volumetric capacity of 2.4 mAh cm−3 and length/areal/volumetric energy density of 0.0075 mWh cm−1/0.03 mWh cm−2/2.0 mWh cm−3 at 0 °C, all of which are higher than values of many previously reported devices at room temperature so far. Moreover, compared with these at 0 °C, the volumetric capacity and length/areal/volumetric energy density of the battery get 1.4- and 1.4-fold enhancement when temperature rises to 25 °C, and 1.9- and 2.1-fold enhancement at 60 °C, respectively. This research indicates that our yarn battery is suitable for harsh winters and searing summers, laying a solid foundation for the universal application of wearable electronics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨善若完成签到,获得积分10
1秒前
hs完成签到,获得积分20
1秒前
ZHANGMANLI0422完成签到,获得积分10
1秒前
susu关注了科研通微信公众号
3秒前
DYuH23完成签到,获得积分10
4秒前
5秒前
爱静静应助DHL采纳,获得10
5秒前
5秒前
sunny661104完成签到 ,获得积分10
6秒前
简单完成签到 ,获得积分10
6秒前
尘林发布了新的文献求助10
6秒前
Z-先森完成签到,获得积分0
7秒前
苏源智发布了新的文献求助10
7秒前
伯赏诗霜完成签到,获得积分10
8秒前
NN应助LIn采纳,获得10
9秒前
9秒前
超级无敌学术苦瓜完成签到,获得积分10
9秒前
9秒前
Zn应助111采纳,获得10
10秒前
舒适静丹完成签到,获得积分10
11秒前
丽颖发布了新的文献求助10
12秒前
cui完成签到,获得积分10
12秒前
lixm完成签到,获得积分10
12秒前
yyyyy语言完成签到,获得积分10
12秒前
栗子完成签到,获得积分10
13秒前
卧镁铀钳完成签到 ,获得积分10
14秒前
DHL完成签到,获得积分10
15秒前
TT发布了新的文献求助10
15秒前
小蘑菇应助科研通管家采纳,获得30
16秒前
terence应助科研通管家采纳,获得30
16秒前
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
Akim应助科研通管家采纳,获得10
16秒前
思源应助科研通管家采纳,获得10
17秒前
害怕的小玉完成签到,获得积分10
17秒前
18秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849