对映体过量
对映选择合成
不对称氢化
催化作用
启发式
基质(水族馆)
概念证明
计算机科学
集合(抽象数据类型)
化学
数学
人工智能
有机化学
地质学
操作系统
程序设计语言
海洋学
作者
Sukriti Singh,Monika Pareek,Avtar Changotra,Sayan Banerjee,Bangaru Bhaskararao,P. Balamurugan,Raghavan B. Sunoj
标识
DOI:10.1073/pnas.1916392117
摘要
Design of asymmetric catalysts generally involves time- and resource-intensive heuristic endeavors. In view of the steady increase in interest toward efficient catalytic asymmetric reactions and the rapid growth in the field of machine learning (ML) in recent years, we envisaged dovetailing these two important domains. We selected a set of quantum chemically derived molecular descriptors from five different asymmetric binaphthyl-derived catalyst families with the propensity to impact the enantioselectivity of asymmetric hydrogenation of alkenes and imines. The predictive power of the random forest (RF) built using the molecular parameters of a set of 368 substrate-catalyst combinations is found to be impressive, with a root-mean-square error (rmse) in the predicted enantiomeric excess (%
科研通智能强力驱动
Strongly Powered by AbleSci AI