A Spectral Grouping and Attention-Driven Residual Dense Network for Hyperspectral Image Super-Resolution

高光谱成像 计算机科学 人工智能 块(置换群论) 光谱带 卷积(计算机科学) 光谱分辨率 卷积神经网络 特征(语言学) 模式识别(心理学) 残余物 全光谱成像 图像分辨率 光谱特征 遥感 人工神经网络 数学 算法 谱线 地质学 物理 语言学 哲学 几何学 天文
作者
Denghong Liu,Jie Li,Qiangqiang Yuan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (9): 7711-7725 被引量:78
标识
DOI:10.1109/tgrs.2021.3049875
摘要

Although unprecedented success has been achieved in convolutional neural network (CNN)-based super-resolution (SR) for natural images, hyperspectral image (HSI) SR without auxiliary high-resolution images remains a challenging task due to the high spectral dimensionality, where learning effective spatial and spectral representations is of great importance. In this article, we introduce a novel CNN-based HSI SR method, termed spectral grouping and attention-driven residual dense network (SGARDN) to facilitate the modeling of all spectral bands and focus on the exploration of spatial-spectral features. Considering the block characteristic of HSI, we employ group convolutions in and between groups composed of highly similar spectral bands at early stages to extract informative spatial features and avoid spectral disorder caused by normal convolution. To exploit spectral prior, a new spectral attention mechanism constructed by covariance statistics of features is designed to adaptively recalibrate features. We adapt the spectral attention for group convolutions to rescale grouping features with holistic spectral information. These two sequential operations called spectral grouping and integration module aim to extract effective shallow spatial-spectral features that are reused in the following layers. On the other hand, the residual dense block can better deal with spatial-spectral features by experimental comparison and hence is combined with the spectral attention to form a new basic building block for powerful feature expression and spectral correlation learning. The experimental results on synthesized and real-scenario HSIs demonstrate the feasibility and superiority of the proposed method over other state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助清新的易真采纳,获得10
刚刚
刚刚
刚刚
科研通AI6应助骆丹妗采纳,获得10
1秒前
SC武发布了新的文献求助10
1秒前
车车发布了新的文献求助20
1秒前
zc发布了新的文献求助10
1秒前
研友_VZG7GZ应助十字勋章采纳,获得10
2秒前
2秒前
花花发布了新的文献求助10
2秒前
Jing完成签到,获得积分10
2秒前
2秒前
一挖一麻袋完成签到,获得积分10
3秒前
赘婿应助科研顺利采纳,获得10
3秒前
3秒前
3秒前
小蘑菇应助JH采纳,获得10
4秒前
贺兰完成签到,获得积分10
4秒前
无极微光应助Honahlee采纳,获得20
4秒前
wangshibing发布了新的文献求助10
4秒前
xtinee发布了新的文献求助10
4秒前
彩虹糖完成签到,获得积分10
4秒前
andy-law完成签到,获得积分10
5秒前
KJ发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
52251013106发布了新的文献求助10
6秒前
传奇3应助lxy采纳,获得10
7秒前
7秒前
7秒前
黄兆强完成签到 ,获得积分10
7秒前
WuYixiao1012发布了新的文献求助10
8秒前
huang完成签到,获得积分10
8秒前
李健的粉丝团团长应助yrr采纳,获得10
8秒前
8秒前
LC完成签到,获得积分10
8秒前
浆果肉丸发布了新的文献求助50
9秒前
不安平蓝羽完成签到,获得积分10
9秒前
独角兽先生完成签到 ,获得积分10
9秒前
Owen应助kanohola采纳,获得30
9秒前
迷途羔羊完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665611
求助须知:如何正确求助?哪些是违规求助? 4877669
关于积分的说明 15114824
捐赠科研通 4824856
什么是DOI,文献DOI怎么找? 2582972
邀请新用户注册赠送积分活动 1536984
关于科研通互助平台的介绍 1495418