A Spectral Grouping and Attention-Driven Residual Dense Network for Hyperspectral Image Super-Resolution

高光谱成像 计算机科学 人工智能 块(置换群论) 光谱带 卷积(计算机科学) 光谱分辨率 卷积神经网络 特征(语言学) 模式识别(心理学) 残余物 全光谱成像 图像分辨率 光谱特征 遥感 人工神经网络 数学 算法 谱线 地质学 物理 语言学 哲学 几何学 天文
作者
Denghong Liu,Jie Li,Qiangqiang Yuan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (9): 7711-7725 被引量:78
标识
DOI:10.1109/tgrs.2021.3049875
摘要

Although unprecedented success has been achieved in convolutional neural network (CNN)-based super-resolution (SR) for natural images, hyperspectral image (HSI) SR without auxiliary high-resolution images remains a challenging task due to the high spectral dimensionality, where learning effective spatial and spectral representations is of great importance. In this article, we introduce a novel CNN-based HSI SR method, termed spectral grouping and attention-driven residual dense network (SGARDN) to facilitate the modeling of all spectral bands and focus on the exploration of spatial-spectral features. Considering the block characteristic of HSI, we employ group convolutions in and between groups composed of highly similar spectral bands at early stages to extract informative spatial features and avoid spectral disorder caused by normal convolution. To exploit spectral prior, a new spectral attention mechanism constructed by covariance statistics of features is designed to adaptively recalibrate features. We adapt the spectral attention for group convolutions to rescale grouping features with holistic spectral information. These two sequential operations called spectral grouping and integration module aim to extract effective shallow spatial-spectral features that are reused in the following layers. On the other hand, the residual dense block can better deal with spatial-spectral features by experimental comparison and hence is combined with the spectral attention to form a new basic building block for powerful feature expression and spectral correlation learning. The experimental results on synthesized and real-scenario HSIs demonstrate the feasibility and superiority of the proposed method over other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
人生如梦完成签到,获得积分10
刚刚
心心相连完成签到,获得积分10
1秒前
李彦发布了新的文献求助10
1秒前
2秒前
3秒前
善学以致用应助wuya采纳,获得200
4秒前
FashionBoy应助沉静晓丝采纳,获得10
4秒前
桃博发布了新的文献求助10
5秒前
5秒前
ABC完成签到,获得积分10
5秒前
6秒前
6秒前
cyndi完成签到,获得积分10
7秒前
张张橘完成签到,获得积分10
7秒前
陈远远完成签到,获得积分10
8秒前
牙牙完成签到,获得积分10
8秒前
无花果应助ThoseRangers0624采纳,获得30
8秒前
PYL233发布了新的文献求助10
8秒前
8秒前
Akim应助务实的绮山采纳,获得10
9秒前
9秒前
9秒前
正月初九完成签到,获得积分10
10秒前
传奇3应助sendou采纳,获得10
10秒前
10秒前
hautzhl发布了新的文献求助10
11秒前
11秒前
Owen应助李彦采纳,获得10
11秒前
12秒前
Xiaoguo发布了新的文献求助10
13秒前
month发布了新的文献求助10
13秒前
大玲发布了新的文献求助10
13秒前
unfraid发布了新的文献求助10
13秒前
14秒前
14秒前
香蕉觅云应助称心曼安采纳,获得10
14秒前
14秒前
蒋谷兰发布了新的文献求助50
15秒前
沉静晓丝完成签到,获得积分10
15秒前
MFNM发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298080
求助须知:如何正确求助?哪些是违规求助? 4446756
关于积分的说明 13840225
捐赠科研通 4331934
什么是DOI,文献DOI怎么找? 2377972
邀请新用户注册赠送积分活动 1373239
关于科研通互助平台的介绍 1338833