A Spectral Grouping and Attention-Driven Residual Dense Network for Hyperspectral Image Super-Resolution

高光谱成像 计算机科学 人工智能 块(置换群论) 光谱带 卷积(计算机科学) 光谱分辨率 卷积神经网络 特征(语言学) 模式识别(心理学) 残余物 全光谱成像 图像分辨率 光谱特征 遥感 人工神经网络 数学 算法 谱线 地质学 物理 几何学 哲学 天文 语言学
作者
Denghong Liu,Jie Li,Qiangqiang Yuan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (9): 7711-7725 被引量:78
标识
DOI:10.1109/tgrs.2021.3049875
摘要

Although unprecedented success has been achieved in convolutional neural network (CNN)-based super-resolution (SR) for natural images, hyperspectral image (HSI) SR without auxiliary high-resolution images remains a challenging task due to the high spectral dimensionality, where learning effective spatial and spectral representations is of great importance. In this article, we introduce a novel CNN-based HSI SR method, termed spectral grouping and attention-driven residual dense network (SGARDN) to facilitate the modeling of all spectral bands and focus on the exploration of spatial-spectral features. Considering the block characteristic of HSI, we employ group convolutions in and between groups composed of highly similar spectral bands at early stages to extract informative spatial features and avoid spectral disorder caused by normal convolution. To exploit spectral prior, a new spectral attention mechanism constructed by covariance statistics of features is designed to adaptively recalibrate features. We adapt the spectral attention for group convolutions to rescale grouping features with holistic spectral information. These two sequential operations called spectral grouping and integration module aim to extract effective shallow spatial-spectral features that are reused in the following layers. On the other hand, the residual dense block can better deal with spatial-spectral features by experimental comparison and hence is combined with the spectral attention to form a new basic building block for powerful feature expression and spectral correlation learning. The experimental results on synthesized and real-scenario HSIs demonstrate the feasibility and superiority of the proposed method over other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
雨声完成签到,获得积分10
1秒前
Hello应助高高采纳,获得10
2秒前
Xicuws发布了新的文献求助10
3秒前
3秒前
笨笨的语蝶完成签到,获得积分10
4秒前
young完成签到,获得积分10
4秒前
8秒前
young发布了新的文献求助10
8秒前
10秒前
田様应助Xicuws采纳,获得10
10秒前
结实凌瑶完成签到 ,获得积分10
10秒前
明亮凡梦完成签到,获得积分10
11秒前
那年的伟哥完成签到,获得积分10
11秒前
思源应助bofu采纳,获得10
12秒前
晴偏好发布了新的文献求助10
13秒前
科研通AI2S应助lllllljmjmjm采纳,获得10
14秒前
不忘初心发布了新的文献求助10
14秒前
正直画笔完成签到 ,获得积分10
14秒前
orixero应助大菠萝采纳,获得10
14秒前
14秒前
橘子发布了新的文献求助10
17秒前
屈绮兰发布了新的文献求助60
18秒前
MchemG应助嘟嘟52edm采纳,获得50
19秒前
yuebaoji发布了新的文献求助10
19秒前
20秒前
yang发布了新的文献求助10
21秒前
泡面小分队完成签到,获得积分10
21秒前
21秒前
希望天下0贩的0应助Costing采纳,获得10
22秒前
我爱吃菜完成签到 ,获得积分10
22秒前
23秒前
24秒前
25秒前
hhh发布了新的文献求助10
25秒前
bofu发布了新的文献求助10
26秒前
666发布了新的文献求助10
27秒前
量子星尘发布了新的文献求助10
29秒前
29秒前
29秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979628
求助须知:如何正确求助?哪些是违规求助? 3523569
关于积分的说明 11218108
捐赠科研通 3261093
什么是DOI,文献DOI怎么找? 1800402
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807163