堆栈(抽象数据类型)
人工神经网络
燃料电池
电压
汽车工程
粒子群优化
工程类
反向传播
计算机科学
电动汽车
质子交换膜燃料电池
模拟
人工智能
算法
电气工程
量子力学
物理
功率(物理)
化学工程
程序设计语言
作者
Zheng Feng Lu,Yongping Hou,Wenqi Li,Dong Hao
出处
期刊:SAE International Journal of Advances and Current Practices in Mobility
日期:2021-04-06
卷期号:3 (4): 1976-1984
被引量:5
摘要
<div class="section abstract"><div class="htmlview paragraph">Life prediction is a major focus for a commercial fuel cell stack, especially applied in fuel cell electric vehicles (FCEV). This paper proposes a data driven fuel cell lifetime prediction model using particle swarm optimized back-propagation neural network (PSO-BPNN). For the prediction model PSO-BP, PSO algorithm is used to determine the optimal hyper parameters of BP neural network. In this paper, total voltage of fuel cell stack is employed to represent the health index of fuel cell. Then the proposed prediction model is validated by the aging data from PEMFC stack in FCEV at the actual road condition. The experimental results indicate that PSO-BP model can predict the voltage degradation of PEMFC stack at actual road condition precisely and has a higher prediction accuracy than BP model.</div></div>
科研通智能强力驱动
Strongly Powered by AbleSci AI