Graph Adversarial Training: Dynamically Regularizing Based on Graph Structure

计算机科学 对抗制 图形 理论计算机科学 稳健性(进化) 人工智能 卷积神经网络 正规化(语言学) 机器学习 生物化学 化学 基因
作者
Fuli Feng,Xiangnan He,Jie Tang,Tat-Seng Chua
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:33 (6): 2493-2504 被引量:86
标识
DOI:10.1109/tkde.2019.2957786
摘要

Recent efforts show that neural networks are vulnerable to small but intentional perturbations on input features in visual classification tasks. Due to the additional consideration of connections between examples (e.g., articles with citation link tend to be in the same class), graph neural networks could be more sensitive to the perturbations, since the perturbations from connected examples exacerbate the impact on a target example. Adversarial Training (AT), a dynamic regularization technique, can resist the worst-case perturbations on input features and is a promising choice to improve model robustness and generalization. However, existing AT methods focus on standard classification, being less effective when training models on graph since it does not model the impact from connected examples. In this work, we explore adversarial training on graph, aiming to improve the robustness and generalization of models learned on graph. We propose Graph Adversarial Training (GraphAT), which takes the impact from connected examples into account when learning to construct and resist perturbations. We give a general formulation of GraphAT, which can be seen as a dynamic regularization scheme based on the graph structure. To demonstrate the utility of GraphAT, we employ it on a state-of-the-art graph neural network model - Graph Convolutional Network (GCN). We conduct experiments on two citation graphs (Citeseer and Cora) and a knowledge graph (NELL), verifying the effectiveness of GraphAT which outperforms normal training on GCN by 4.51 percent in node classification accuracy. Codes are available via: https://github.com/fulifeng/GraphAT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小鹏同学完成签到,获得积分10
1秒前
2秒前
小二郎应助小李采纳,获得10
2秒前
LamHaousing完成签到,获得积分10
3秒前
3秒前
5秒前
dll关闭了dll文献求助
6秒前
希望天下0贩的0应助1123采纳,获得10
6秒前
6秒前
无花果应助欣慰雪巧采纳,获得10
6秒前
kakal完成签到,获得积分10
7秒前
一一发布了新的文献求助10
7秒前
鲜艳的怜菡完成签到,获得积分20
7秒前
7秒前
脑洞疼应助安谢采纳,获得10
7秒前
monica发布了新的文献求助10
8秒前
研友_ZeoKYL发布了新的文献求助10
8秒前
8秒前
无花果应助烦烦烦采纳,获得10
9秒前
10秒前
哑巴和喇叭完成签到 ,获得积分10
10秒前
10秒前
10秒前
kakal发布了新的文献求助30
11秒前
孟君发布了新的文献求助30
11秒前
bicargo发布了新的文献求助30
12秒前
希望天下0贩的0应助Zhang采纳,获得10
13秒前
13秒前
senli2018完成签到,获得积分10
14秒前
朝春日走去完成签到,获得积分10
14秒前
14秒前
15秒前
Lmy完成签到,获得积分10
15秒前
嘟嘟发布了新的文献求助10
15秒前
瑶瑶酱发布了新的文献求助10
15秒前
浮游应助无奈敏采纳,获得10
16秒前
张张发布了新的文献求助10
16秒前
LUNE完成签到 ,获得积分10
17秒前
鱼辞发布了新的文献求助30
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424904
求助须知:如何正确求助?哪些是违规求助? 4539183
关于积分的说明 14165914
捐赠科研通 4456291
什么是DOI,文献DOI怎么找? 2444084
邀请新用户注册赠送积分活动 1435170
关于科研通互助平台的介绍 1412492