Graph Adversarial Training: Dynamically Regularizing Based on Graph Structure

计算机科学 对抗制 图形 理论计算机科学 稳健性(进化) 人工智能 卷积神经网络 正规化(语言学) 机器学习 生物化学 基因 化学
作者
Fuli Feng,Xiangnan He,Jie Tang,Tat-Seng Chua
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:33 (6): 2493-2504 被引量:86
标识
DOI:10.1109/tkde.2019.2957786
摘要

Recent efforts show that neural networks are vulnerable to small but intentional perturbations on input features in visual classification tasks. Due to the additional consideration of connections between examples (e.g., articles with citation link tend to be in the same class), graph neural networks could be more sensitive to the perturbations, since the perturbations from connected examples exacerbate the impact on a target example. Adversarial Training (AT), a dynamic regularization technique, can resist the worst-case perturbations on input features and is a promising choice to improve model robustness and generalization. However, existing AT methods focus on standard classification, being less effective when training models on graph since it does not model the impact from connected examples. In this work, we explore adversarial training on graph, aiming to improve the robustness and generalization of models learned on graph. We propose Graph Adversarial Training (GraphAT), which takes the impact from connected examples into account when learning to construct and resist perturbations. We give a general formulation of GraphAT, which can be seen as a dynamic regularization scheme based on the graph structure. To demonstrate the utility of GraphAT, we employ it on a state-of-the-art graph neural network model - Graph Convolutional Network (GCN). We conduct experiments on two citation graphs (Citeseer and Cora) and a knowledge graph (NELL), verifying the effectiveness of GraphAT which outperforms normal training on GCN by 4.51 percent in node classification accuracy. Codes are available via: https://github.com/fulifeng/GraphAT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
华仔应助甜美的青柏采纳,获得10
1秒前
852应助zwl采纳,获得10
3秒前
香蕉梨愁发布了新的文献求助10
4秒前
zyw发布了新的文献求助10
4秒前
zsy111发布了新的文献求助10
4秒前
桐桐应助夕荀采纳,获得10
5秒前
彭于晏应助半截神经病采纳,获得10
6秒前
CodeCraft应助快乐的鱼采纳,获得10
6秒前
lenaimiao完成签到,获得积分10
6秒前
科研通AI5应助vdfr采纳,获得30
7秒前
Orange完成签到,获得积分10
7秒前
852应助陌上之心采纳,获得10
7秒前
斯文败类应助Arimson采纳,获得10
7秒前
酆百川应助田田采纳,获得20
7秒前
浮游应助周媚媚采纳,获得10
7秒前
魔幻若血发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
动听的母鸡完成签到,获得积分10
9秒前
10秒前
10秒前
123完成签到,获得积分10
11秒前
11秒前
111完成签到 ,获得积分10
11秒前
11秒前
德古完成签到,获得积分10
11秒前
13秒前
13秒前
好的番茄loconte完成签到,获得积分10
13秒前
Rodeo发布了新的文献求助10
14秒前
zwl发布了新的文献求助10
14秒前
14秒前
韩麒嘉发布了新的文献求助10
14秒前
大辉发布了新的文献求助10
14秒前
15秒前
田様应助小新采纳,获得10
15秒前
科研张完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4560119
求助须知:如何正确求助?哪些是违规求助? 3986390
关于积分的说明 12342454
捐赠科研通 3657013
什么是DOI,文献DOI怎么找? 2014682
邀请新用户注册赠送积分活动 1049457
科研通“疑难数据库(出版商)”最低求助积分说明 937756