已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Graph Adversarial Training: Dynamically Regularizing Based on Graph Structure

计算机科学 对抗制 图形 理论计算机科学 稳健性(进化) 人工智能 卷积神经网络 正规化(语言学) 机器学习 生物化学 基因 化学
作者
Fuli Feng,Xiangnan He,Jie Tang,Tat-Seng Chua
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:33 (6): 2493-2504 被引量:86
标识
DOI:10.1109/tkde.2019.2957786
摘要

Recent efforts show that neural networks are vulnerable to small but intentional perturbations on input features in visual classification tasks. Due to the additional consideration of connections between examples (e.g., articles with citation link tend to be in the same class), graph neural networks could be more sensitive to the perturbations, since the perturbations from connected examples exacerbate the impact on a target example. Adversarial Training (AT), a dynamic regularization technique, can resist the worst-case perturbations on input features and is a promising choice to improve model robustness and generalization. However, existing AT methods focus on standard classification, being less effective when training models on graph since it does not model the impact from connected examples. In this work, we explore adversarial training on graph, aiming to improve the robustness and generalization of models learned on graph. We propose Graph Adversarial Training (GraphAT), which takes the impact from connected examples into account when learning to construct and resist perturbations. We give a general formulation of GraphAT, which can be seen as a dynamic regularization scheme based on the graph structure. To demonstrate the utility of GraphAT, we employ it on a state-of-the-art graph neural network model - Graph Convolutional Network (GCN). We conduct experiments on two citation graphs (Citeseer and Cora) and a knowledge graph (NELL), verifying the effectiveness of GraphAT which outperforms normal training on GCN by 4.51 percent in node classification accuracy. Codes are available via: https://github.com/fulifeng/GraphAT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧虑的羊发布了新的文献求助10
刚刚
所所应助葫芦娃采纳,获得10
7秒前
秀丽烨霖应助葫芦娃采纳,获得10
7秒前
肆意发布了新的文献求助10
8秒前
可爱的函函应助lanshuitai采纳,获得10
8秒前
快了科研完成签到,获得积分10
9秒前
坚定的平松完成签到,获得积分10
9秒前
咸鱼完成签到,获得积分10
9秒前
10秒前
idiom完成签到,获得积分10
13秒前
小猫宝完成签到 ,获得积分10
13秒前
L21发布了新的文献求助10
14秒前
小薇完成签到,获得积分10
15秒前
啦啦啦发布了新的文献求助10
15秒前
17秒前
CodeCraft应助两点水采纳,获得10
20秒前
realmar完成签到,获得积分10
20秒前
lulu完成签到 ,获得积分10
23秒前
科研通AI2S应助栗子采纳,获得10
24秒前
爆米花应助坚定的平松采纳,获得30
24秒前
细草微风岸完成签到 ,获得积分10
25秒前
pluto应助L21采纳,获得10
25秒前
25秒前
肆意完成签到,获得积分10
25秒前
26秒前
26秒前
水野完成签到,获得积分20
27秒前
悦耳代亦完成签到 ,获得积分10
28秒前
35秒前
谢小盟完成签到 ,获得积分10
36秒前
15136780701完成签到 ,获得积分10
36秒前
37秒前
37秒前
wang完成签到,获得积分10
37秒前
z2v发布了新的文献求助10
40秒前
41秒前
欢呼妙彤发布了新的文献求助10
42秒前
科研菜鸟完成签到 ,获得积分10
42秒前
47秒前
烂漫的汲完成签到,获得积分10
53秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248577
求助须知:如何正确求助?哪些是违规求助? 2892044
关于积分的说明 8269571
捐赠科研通 2560135
什么是DOI,文献DOI怎么找? 1388854
科研通“疑难数据库(出版商)”最低求助积分说明 650918
邀请新用户注册赠送积分活动 627798