亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Graph Adversarial Training: Dynamically Regularizing Based on Graph Structure

计算机科学 对抗制 图形 理论计算机科学 稳健性(进化) 人工智能 卷积神经网络 正规化(语言学) 机器学习 生物化学 化学 基因
作者
Fuli Feng,Xiangnan He,Jie Tang,Tat-Seng Chua
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:33 (6): 2493-2504 被引量:86
标识
DOI:10.1109/tkde.2019.2957786
摘要

Recent efforts show that neural networks are vulnerable to small but intentional perturbations on input features in visual classification tasks. Due to the additional consideration of connections between examples (e.g., articles with citation link tend to be in the same class), graph neural networks could be more sensitive to the perturbations, since the perturbations from connected examples exacerbate the impact on a target example. Adversarial Training (AT), a dynamic regularization technique, can resist the worst-case perturbations on input features and is a promising choice to improve model robustness and generalization. However, existing AT methods focus on standard classification, being less effective when training models on graph since it does not model the impact from connected examples. In this work, we explore adversarial training on graph, aiming to improve the robustness and generalization of models learned on graph. We propose Graph Adversarial Training (GraphAT), which takes the impact from connected examples into account when learning to construct and resist perturbations. We give a general formulation of GraphAT, which can be seen as a dynamic regularization scheme based on the graph structure. To demonstrate the utility of GraphAT, we employ it on a state-of-the-art graph neural network model - Graph Convolutional Network (GCN). We conduct experiments on two citation graphs (Citeseer and Cora) and a knowledge graph (NELL), verifying the effectiveness of GraphAT which outperforms normal training on GCN by 4.51 percent in node classification accuracy. Codes are available via: https://github.com/fulifeng/GraphAT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神秘面筋男完成签到,获得积分10
11秒前
20秒前
hgsgeospan完成签到,获得积分10
40秒前
Chaos完成签到 ,获得积分10
43秒前
hgs完成签到,获得积分10
44秒前
猪仔5号发布了新的文献求助10
1分钟前
1分钟前
3分钟前
3分钟前
一二三四发布了新的文献求助10
4分钟前
4分钟前
一二三四完成签到,获得积分10
5分钟前
5分钟前
5分钟前
科研通AI6应助科研通管家采纳,获得30
5分钟前
6分钟前
金光一闪发布了新的文献求助10
7分钟前
金光一闪完成签到,获得积分10
7分钟前
7分钟前
爱静静应助乔威采纳,获得10
7分钟前
8分钟前
笔墨纸砚完成签到 ,获得积分10
8分钟前
8分钟前
田様应助Alice采纳,获得10
9分钟前
9分钟前
9分钟前
cc发布了新的文献求助10
9分钟前
浮游应助cc采纳,获得10
9分钟前
FashionBoy应助cc采纳,获得10
9分钟前
尼古丁的味道完成签到 ,获得积分10
9分钟前
余呀余完成签到 ,获得积分10
9分钟前
cc完成签到,获得积分10
9分钟前
鳄鱼不做饿梦完成签到,获得积分10
11分钟前
11分钟前
fangjc1024发布了新的文献求助10
11分钟前
11分钟前
Mcling完成签到,获得积分10
11分钟前
fangjc1024完成签到,获得积分10
11分钟前
11分钟前
旁边有堵墙完成签到 ,获得积分20
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302846
求助须知:如何正确求助?哪些是违规求助? 4449882
关于积分的说明 13848728
捐赠科研通 4336199
什么是DOI,文献DOI怎么找? 2380825
邀请新用户注册赠送积分活动 1375769
关于科研通互助平台的介绍 1342143