Graph Adversarial Training: Dynamically Regularizing Based on Graph Structure

计算机科学 对抗制 图形 理论计算机科学 稳健性(进化) 人工智能 卷积神经网络 正规化(语言学) 机器学习 生物化学 基因 化学
作者
Fuli Feng,Xiangnan He,Jie Tang,Tat-Seng Chua
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:33 (6): 2493-2504 被引量:86
标识
DOI:10.1109/tkde.2019.2957786
摘要

Recent efforts show that neural networks are vulnerable to small but intentional perturbations on input features in visual classification tasks. Due to the additional consideration of connections between examples (e.g., articles with citation link tend to be in the same class), graph neural networks could be more sensitive to the perturbations, since the perturbations from connected examples exacerbate the impact on a target example. Adversarial Training (AT), a dynamic regularization technique, can resist the worst-case perturbations on input features and is a promising choice to improve model robustness and generalization. However, existing AT methods focus on standard classification, being less effective when training models on graph since it does not model the impact from connected examples. In this work, we explore adversarial training on graph, aiming to improve the robustness and generalization of models learned on graph. We propose Graph Adversarial Training (GraphAT), which takes the impact from connected examples into account when learning to construct and resist perturbations. We give a general formulation of GraphAT, which can be seen as a dynamic regularization scheme based on the graph structure. To demonstrate the utility of GraphAT, we employ it on a state-of-the-art graph neural network model - Graph Convolutional Network (GCN). We conduct experiments on two citation graphs (Citeseer and Cora) and a knowledge graph (NELL), verifying the effectiveness of GraphAT which outperforms normal training on GCN by 4.51 percent in node classification accuracy. Codes are available via: https://github.com/fulifeng/GraphAT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助阿勒泰采纳,获得10
刚刚
刚刚
刚刚
菊菊关注了科研通微信公众号
1秒前
1秒前
1秒前
水星MERCURY应助雨夜星空采纳,获得10
2秒前
2秒前
2秒前
3秒前
九九完成签到,获得积分10
3秒前
dwl完成签到 ,获得积分10
3秒前
懵懂的尔风完成签到 ,获得积分10
3秒前
3秒前
456完成签到,获得积分10
3秒前
科研通AI5应助以恒之心采纳,获得10
4秒前
易哒哒发布了新的文献求助10
5秒前
5秒前
6秒前
微笑完成签到,获得积分10
6秒前
火星上的映安完成签到 ,获得积分10
6秒前
Microgan完成签到,获得积分10
6秒前
进击的小胳膊完成签到,获得积分10
7秒前
7秒前
科研通AI5应助徐徐采纳,获得80
7秒前
7秒前
Orange应助Joshua采纳,获得10
8秒前
9秒前
9秒前
10秒前
蒋时晏应助陶醉薯片采纳,获得30
10秒前
10秒前
执着的灯泡完成签到,获得积分10
10秒前
睡到自然醒完成签到 ,获得积分10
11秒前
11秒前
11秒前
11秒前
Musen完成签到,获得积分10
11秒前
科研通AI5应助叫滚滚采纳,获得10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762