亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Application of Data-Driven Methods and Physics-Based Learning for Improving Battery Safety

更安全的 电池(电) 可靠性(半导体) 计算机科学 一致性(知识库) 透视图(图形) 失效物理学 数据质量 质量(理念) 数据驱动 可靠性工程 机器学习 风险分析(工程) 系统工程 工程类 人工智能 医学 公制(单位) 功率(物理) 运营管理 物理 哲学 计算机安全 认识论 量子力学
作者
Donal P. Finegan,Juner Zhu,Xuning Feng,Matthew Keyser,Marcus Ulmefors,Wei Li,Martin Z. Bazant,Samuel J. Cooper
出处
期刊:Joule [Elsevier]
卷期号:5 (2): 316-329 被引量:255
标识
DOI:10.1016/j.joule.2020.11.018
摘要

Enabling accurate prediction of battery failure will lead to safer battery systems, as well as accelerating cell design and manufacturing processes for increased consistency and reliability. Data-driven prediction methods have shown promise for accurately predicting cell behaviors with low computational cost, but they are expensive to train. Furthermore, given that the risk of battery failure is already very low, gathering enough relevant data to facilitate data-driven predictions is extremely challenging. Here, a perspective for designing experiments to facilitate a relatively low number of tests, handling the data, applying data-driven methods, and improving our understanding of behavior-dictating physics is outlined. This perspective starts with effective strategies for experimentally replicating rare failure scenarios and thus reducing the number of experiments, and proceeds to describe means to acquire high-quality datasets, apply data-driven prediction techniques, and to extract physical insights into the events that lead to failure by incorporating physics into data-driven approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ch完成签到,获得积分10
11秒前
23秒前
26秒前
一颗忧伤的覆盆子完成签到,获得积分10
29秒前
支雨泽完成签到,获得积分10
29秒前
香芹又青完成签到,获得积分10
29秒前
40秒前
年鱼精完成签到 ,获得积分10
42秒前
45秒前
英俊的铭应助科研通管家采纳,获得10
47秒前
48秒前
Criminology34应助科研通管家采纳,获得10
52秒前
Criminology34应助科研通管家采纳,获得10
52秒前
55秒前
sys549发布了新的文献求助10
1分钟前
1分钟前
Nancy0818完成签到 ,获得积分10
1分钟前
1分钟前
月亮夏的夏完成签到,获得积分10
2分钟前
smottom应助月亮夏的夏采纳,获得10
2分钟前
2分钟前
2分钟前
清脆觅珍发布了新的文献求助10
2分钟前
袁青寒完成签到,获得积分10
2分钟前
2分钟前
研友_VZG7GZ应助毕业采纳,获得10
2分钟前
淡淡诗柳发布了新的文献求助20
2分钟前
9527完成签到,获得积分10
3分钟前
3分钟前
淡淡诗柳完成签到,获得积分10
3分钟前
ch发布了新的文献求助10
3分钟前
3分钟前
Gydl完成签到,获得积分10
3分钟前
3分钟前
美满尔蓝完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
雪霁完成签到,获得积分10
3分钟前
绿树成荫发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772752
求助须知:如何正确求助?哪些是违规求助? 5601889
关于积分的说明 15430003
捐赠科研通 4905623
什么是DOI,文献DOI怎么找? 2639561
邀请新用户注册赠送积分活动 1587463
关于科研通互助平台的介绍 1542394