Multi-view radiomics and dosiomics analysis with machine learning for predicting acute-phase weight loss in lung cancer patients treated with radiotherapy

放射治疗 肺癌 数学 核医学 人工智能 医学 直方图 计算机科学 模式识别(心理学) 放射科 图像(数学) 肿瘤科
作者
Sang Ho Lee,Peijin Han,Russell K. Hales,Khinh Ranh Voong,Kazumasa Noro,S. Sugiyama,John Haller,Todd McNutt,Junghoon Lee
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:65 (19): 195015-195015 被引量:45
标识
DOI:10.1088/1361-6560/ab8531
摘要

We propose a multi-view data analysis approach using radiomics and dosiomics (R&D) texture features for predicting acute-phase weight loss (WL) in lung cancer radiotherapy. Baseline weight of 388 patients who underwent intensity modulated radiation therapy (IMRT) was measured between one month prior to and one week after the start of IMRT. Weight change between one week and two months after the commencement of IMRT was analyzed, and dichotomized at 5% WL. Each patient had a planning CT and contours of gross tumor volume (GTV) and esophagus (ESO). A total of 355 features including clinical parameter (CP), GTV and ESO (GTV&ESO) dose-volume histogram (DVH), GTV radiomics, and GTV&ESO dosiomics features were extracted. R&D features were categorized as first- (L1), second- (L2), higher-order (L3) statistics, and three combined groups, L1 + L2, L2 + L3 and L1 + L2 + L3. Multi-view texture analysis was performed to identify optimal R&D input features. In the training set (194 earlier patients), feature selection was performed using Boruta algorithm followed by collinearity removal based on variance inflation factor. Machine-learning models were developed using Laplacian kernel support vector machine (lpSVM), deep neural network (DNN) and their averaged ensemble classifiers. Prediction performance was tested on an independent test set (194 more recent patients), and compared among seven different input conditions: CP-only, DVH-only, R&D-only, DVH + CP, R&D + CP, R&D + DVH and R&D + DVH + CP. Combined GTV L1 + L2 + L3 radiomics and GTV&ESO L3 dosiomics were identified as optimal input features, which achieved the best performance with an ensemble classifier (AUC = 0.710), having statistically significantly higher predictability compared with DVH and/or CP features (p < 0.05). When this performance was compared to that with full R&D-only features which reflect traditional single-view data, there was a statistically significant difference (p < 0.05). Using optimized multi-view R&D input features is beneficial for predicting early WL in lung cancer radiotherapy, leading to improved performance compared to using conventional DVH and/or CP features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fjfzfisher发布了新的文献求助10
1秒前
酷酷幻枫完成签到,获得积分10
1秒前
NexusExplorer应助124578采纳,获得10
4秒前
天天快乐应助acow采纳,获得10
4秒前
6秒前
善学以致用应助M1982采纳,获得10
6秒前
7秒前
朝暮应助雨纷纷采纳,获得10
7秒前
Orange应助vicky采纳,获得10
7秒前
852应助博ge采纳,获得10
8秒前
852应助chenqingyu采纳,获得10
8秒前
希望天下0贩的0应助大溺采纳,获得10
9秒前
pcr163应助狮子清明尊采纳,获得30
9秒前
10秒前
酷波er应助甜崽采纳,获得10
10秒前
MY完成签到,获得积分10
10秒前
ghy完成签到 ,获得积分10
10秒前
科研通AI5应助Lsx采纳,获得10
11秒前
shuaixiaoyu完成签到,获得积分10
11秒前
徐昊楠完成签到 ,获得积分10
11秒前
科研通AI5应助Maggie采纳,获得10
11秒前
林爷完成签到,获得积分10
11秒前
科研通AI2S应助昏睡的蟠桃采纳,获得10
12秒前
CipherSage应助归海老四采纳,获得30
12秒前
13秒前
13秒前
14秒前
皮卡猪完成签到 ,获得积分10
15秒前
zydaphne完成签到 ,获得积分10
16秒前
17秒前
天天快乐应助slin_sjtu采纳,获得10
17秒前
18秒前
诚心断天完成签到,获得积分10
18秒前
肉卷完成签到,获得积分10
18秒前
19秒前
蔡芝艳发布了新的文献求助10
19秒前
19秒前
一叶舟完成签到,获得积分10
20秒前
20秒前
wanci应助qcf采纳,获得10
20秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980251
求助须知:如何正确求助?哪些是违规求助? 3524205
关于积分的说明 11220347
捐赠科研通 3261655
什么是DOI,文献DOI怎么找? 1800851
邀请新用户注册赠送积分活动 879332
科研通“疑难数据库(出版商)”最低求助积分说明 807234