Multi-view radiomics and dosiomics analysis with machine learning for predicting acute-phase weight loss in lung cancer patients treated with radiotherapy

放射治疗 肺癌 数学 核医学 人工智能 医学 直方图 计算机科学 模式识别(心理学) 放射科 图像(数学) 肿瘤科
作者
Sang Ho Lee,Peijin Han,Russell K. Hales,Khinh Ranh Voong,Kazumasa Noro,S. Sugiyama,John Haller,Todd McNutt,Junghoon Lee
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:65 (19): 195015-195015 被引量:45
标识
DOI:10.1088/1361-6560/ab8531
摘要

We propose a multi-view data analysis approach using radiomics and dosiomics (R&D) texture features for predicting acute-phase weight loss (WL) in lung cancer radiotherapy. Baseline weight of 388 patients who underwent intensity modulated radiation therapy (IMRT) was measured between one month prior to and one week after the start of IMRT. Weight change between one week and two months after the commencement of IMRT was analyzed, and dichotomized at 5% WL. Each patient had a planning CT and contours of gross tumor volume (GTV) and esophagus (ESO). A total of 355 features including clinical parameter (CP), GTV and ESO (GTV&ESO) dose-volume histogram (DVH), GTV radiomics, and GTV&ESO dosiomics features were extracted. R&D features were categorized as first- (L1), second- (L2), higher-order (L3) statistics, and three combined groups, L1 + L2, L2 + L3 and L1 + L2 + L3. Multi-view texture analysis was performed to identify optimal R&D input features. In the training set (194 earlier patients), feature selection was performed using Boruta algorithm followed by collinearity removal based on variance inflation factor. Machine-learning models were developed using Laplacian kernel support vector machine (lpSVM), deep neural network (DNN) and their averaged ensemble classifiers. Prediction performance was tested on an independent test set (194 more recent patients), and compared among seven different input conditions: CP-only, DVH-only, R&D-only, DVH + CP, R&D + CP, R&D + DVH and R&D + DVH + CP. Combined GTV L1 + L2 + L3 radiomics and GTV&ESO L3 dosiomics were identified as optimal input features, which achieved the best performance with an ensemble classifier (AUC = 0.710), having statistically significantly higher predictability compared with DVH and/or CP features (p < 0.05). When this performance was compared to that with full R&D-only features which reflect traditional single-view data, there was a statistically significant difference (p < 0.05). Using optimized multi-view R&D input features is beneficial for predicting early WL in lung cancer radiotherapy, leading to improved performance compared to using conventional DVH and/or CP features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
axiao发布了新的文献求助10
刚刚
刚刚
XD完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
十一玮发布了新的文献求助10
3秒前
我爱小苏打完成签到 ,获得积分10
5秒前
韩邹光发布了新的文献求助10
5秒前
空灵紫玉完成签到,获得积分20
5秒前
无聊的朋友完成签到,获得积分20
6秒前
张慧仪发布了新的文献求助10
7秒前
傲娇猫咪完成签到,获得积分10
8秒前
9秒前
荼蘼如雪发布了新的文献求助10
9秒前
Ava应助空灵紫玉采纳,获得10
9秒前
11秒前
12秒前
tianzml0应助胡说八道采纳,获得10
16秒前
老叶完成签到,获得积分10
21秒前
Lucas应助axiao采纳,获得10
21秒前
21秒前
顺利毕业完成签到 ,获得积分10
22秒前
22秒前
热心采白完成签到,获得积分10
25秒前
mmccc1发布了新的文献求助10
27秒前
糖糖钰发布了新的文献求助30
27秒前
贰鸟应助直走不回头采纳,获得20
28秒前
28秒前
Hellowa发布了新的文献求助10
29秒前
我是你悟空哥哥给我是你悟空哥哥的求助进行了留言
30秒前
30秒前
契咯发布了新的文献求助10
33秒前
35秒前
大白发布了新的文献求助10
35秒前
852应助伊伊采纳,获得10
40秒前
热心的靖巧完成签到 ,获得积分10
41秒前
契咯完成签到,获得积分20
42秒前
43秒前
无花果应助郎治宇采纳,获得10
44秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161332
求助须知:如何正确求助?哪些是违规求助? 2812743
关于积分的说明 7896558
捐赠科研通 2471616
什么是DOI,文献DOI怎么找? 1316066
科研通“疑难数据库(出版商)”最低求助积分说明 631106
版权声明 602112