清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multi-view radiomics and dosiomics analysis with machine learning for predicting acute-phase weight loss in lung cancer patients treated with radiotherapy

放射治疗 肺癌 数学 核医学 人工智能 医学 直方图 计算机科学 模式识别(心理学) 放射科 图像(数学) 肿瘤科
作者
Sang Ho Lee,Peijin Han,Russell K. Hales,Khinh Ranh Voong,Kazumasa Noro,S. Sugiyama,John Haller,Todd McNutt,Junghoon Lee
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:65 (19): 195015-195015 被引量:45
标识
DOI:10.1088/1361-6560/ab8531
摘要

We propose a multi-view data analysis approach using radiomics and dosiomics (R&D) texture features for predicting acute-phase weight loss (WL) in lung cancer radiotherapy. Baseline weight of 388 patients who underwent intensity modulated radiation therapy (IMRT) was measured between one month prior to and one week after the start of IMRT. Weight change between one week and two months after the commencement of IMRT was analyzed, and dichotomized at 5% WL. Each patient had a planning CT and contours of gross tumor volume (GTV) and esophagus (ESO). A total of 355 features including clinical parameter (CP), GTV and ESO (GTV&ESO) dose-volume histogram (DVH), GTV radiomics, and GTV&ESO dosiomics features were extracted. R&D features were categorized as first- (L1), second- (L2), higher-order (L3) statistics, and three combined groups, L1 + L2, L2 + L3 and L1 + L2 + L3. Multi-view texture analysis was performed to identify optimal R&D input features. In the training set (194 earlier patients), feature selection was performed using Boruta algorithm followed by collinearity removal based on variance inflation factor. Machine-learning models were developed using Laplacian kernel support vector machine (lpSVM), deep neural network (DNN) and their averaged ensemble classifiers. Prediction performance was tested on an independent test set (194 more recent patients), and compared among seven different input conditions: CP-only, DVH-only, R&D-only, DVH + CP, R&D + CP, R&D + DVH and R&D + DVH + CP. Combined GTV L1 + L2 + L3 radiomics and GTV&ESO L3 dosiomics were identified as optimal input features, which achieved the best performance with an ensemble classifier (AUC = 0.710), having statistically significantly higher predictability compared with DVH and/or CP features (p < 0.05). When this performance was compared to that with full R&D-only features which reflect traditional single-view data, there was a statistically significant difference (p < 0.05). Using optimized multi-view R&D input features is beneficial for predicting early WL in lung cancer radiotherapy, leading to improved performance compared to using conventional DVH and/or CP features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汶南完成签到 ,获得积分10
10秒前
cgs完成签到 ,获得积分10
36秒前
阿辉完成签到 ,获得积分10
38秒前
55秒前
1分钟前
404NotFOUND发布了新的文献求助30
1分钟前
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
yshj完成签到 ,获得积分0
1分钟前
uppercrusteve完成签到,获得积分10
2分钟前
2分钟前
Akashi完成签到,获得积分10
2分钟前
糟糕的翅膀完成签到,获得积分10
2分钟前
2分钟前
2分钟前
清秀的怀蕊完成签到 ,获得积分10
3分钟前
娇气的妙之完成签到,获得积分10
3分钟前
3分钟前
薛家泰完成签到 ,获得积分10
3分钟前
John发布了新的文献求助10
3分钟前
4分钟前
404NotFOUND发布了新的文献求助10
4分钟前
LPPQBB应助钱念波采纳,获得50
4分钟前
hyc完成签到 ,获得积分20
4分钟前
vitamin完成签到 ,获得积分10
4分钟前
Jasperlee完成签到 ,获得积分10
4分钟前
神勇的天问完成签到 ,获得积分10
4分钟前
hyc关注了科研通微信公众号
4分钟前
科研狗的春天完成签到 ,获得积分10
4分钟前
香蕉觅云应助hyc采纳,获得10
5分钟前
寒山完成签到 ,获得积分20
5分钟前
SciGPT应助科研通管家采纳,获得10
5分钟前
灵巧的石头应助钱念波采纳,获得150
5分钟前
lizhenya完成签到 ,获得积分10
5分钟前
lalala完成签到,获得积分10
6分钟前
6分钟前
lanxinge完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
和谐的夏岚完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5303565
求助须知:如何正确求助?哪些是违规求助? 4450299
关于积分的说明 13849276
捐赠科研通 4337015
什么是DOI,文献DOI怎么找? 2381233
邀请新用户注册赠送积分活动 1376219
关于科研通互助平台的介绍 1342937