Multi-view radiomics and dosiomics analysis with machine learning for predicting acute-phase weight loss in lung cancer patients treated with radiotherapy

放射治疗 肺癌 数学 核医学 人工智能 医学 直方图 计算机科学 模式识别(心理学) 放射科 图像(数学) 肿瘤科
作者
Sang Ho Lee,Peijin Han,Russell K. Hales,Khinh Ranh Voong,Kazumasa Noro,S. Sugiyama,John Haller,Todd McNutt,Junghoon Lee
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:65 (19): 195015-195015 被引量:45
标识
DOI:10.1088/1361-6560/ab8531
摘要

We propose a multi-view data analysis approach using radiomics and dosiomics (R&D) texture features for predicting acute-phase weight loss (WL) in lung cancer radiotherapy. Baseline weight of 388 patients who underwent intensity modulated radiation therapy (IMRT) was measured between one month prior to and one week after the start of IMRT. Weight change between one week and two months after the commencement of IMRT was analyzed, and dichotomized at 5% WL. Each patient had a planning CT and contours of gross tumor volume (GTV) and esophagus (ESO). A total of 355 features including clinical parameter (CP), GTV and ESO (GTV&ESO) dose-volume histogram (DVH), GTV radiomics, and GTV&ESO dosiomics features were extracted. R&D features were categorized as first- (L1), second- (L2), higher-order (L3) statistics, and three combined groups, L1 + L2, L2 + L3 and L1 + L2 + L3. Multi-view texture analysis was performed to identify optimal R&D input features. In the training set (194 earlier patients), feature selection was performed using Boruta algorithm followed by collinearity removal based on variance inflation factor. Machine-learning models were developed using Laplacian kernel support vector machine (lpSVM), deep neural network (DNN) and their averaged ensemble classifiers. Prediction performance was tested on an independent test set (194 more recent patients), and compared among seven different input conditions: CP-only, DVH-only, R&D-only, DVH + CP, R&D + CP, R&D + DVH and R&D + DVH + CP. Combined GTV L1 + L2 + L3 radiomics and GTV&ESO L3 dosiomics were identified as optimal input features, which achieved the best performance with an ensemble classifier (AUC = 0.710), having statistically significantly higher predictability compared with DVH and/or CP features (p < 0.05). When this performance was compared to that with full R&D-only features which reflect traditional single-view data, there was a statistically significant difference (p < 0.05). Using optimized multi-view R&D input features is beneficial for predicting early WL in lung cancer radiotherapy, leading to improved performance compared to using conventional DVH and/or CP features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
许多知识发布了新的文献求助10
1秒前
FashionBoy应助su采纳,获得10
1秒前
1秒前
运敬完成签到 ,获得积分10
2秒前
XSB完成签到,获得积分10
2秒前
青草蛋糕完成签到 ,获得积分10
2秒前
怡然剑成完成签到,获得积分10
2秒前
2秒前
liyuchen发布了新的文献求助10
3秒前
ipeakkka完成签到,获得积分20
5秒前
马克发布了新的文献求助10
5秒前
赵OO完成签到,获得积分10
5秒前
Yon完成签到 ,获得积分10
6秒前
呆头完成签到,获得积分10
6秒前
科研通AI5应助skier采纳,获得10
7秒前
ywang发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
keyantong完成签到 ,获得积分10
13秒前
booshu完成签到,获得积分10
14秒前
jy发布了新的文献求助10
15秒前
朴斓完成签到,获得积分10
15秒前
科研通AI5应助魏伯安采纳,获得10
18秒前
哈密哈密完成签到,获得积分10
18秒前
18秒前
Ava应助浪迹天涯采纳,获得10
18秒前
19秒前
安南发布了新的文献求助10
19秒前
20秒前
healthy完成签到 ,获得积分10
20秒前
21秒前
刘大可完成签到,获得积分10
21秒前
24秒前
su发布了新的文献求助10
24秒前
rookie发布了新的文献求助10
25秒前
方勇飞发布了新的文献求助10
26秒前
郭菱香完成签到 ,获得积分20
26秒前
皮念寒完成签到,获得积分10
26秒前
顺其自然_666888完成签到,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824