已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-view radiomics and dosiomics analysis with machine learning for predicting acute-phase weight loss in lung cancer patients treated with radiotherapy

放射治疗 肺癌 数学 核医学 人工智能 医学 直方图 计算机科学 模式识别(心理学) 放射科 图像(数学) 肿瘤科
作者
Sang Ho Lee,Peijin Han,Russell K. Hales,Khinh Ranh Voong,Kazumasa Noro,S. Sugiyama,John Haller,Todd McNutt,Junghoon Lee
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:65 (19): 195015-195015 被引量:45
标识
DOI:10.1088/1361-6560/ab8531
摘要

We propose a multi-view data analysis approach using radiomics and dosiomics (R&D) texture features for predicting acute-phase weight loss (WL) in lung cancer radiotherapy. Baseline weight of 388 patients who underwent intensity modulated radiation therapy (IMRT) was measured between one month prior to and one week after the start of IMRT. Weight change between one week and two months after the commencement of IMRT was analyzed, and dichotomized at 5% WL. Each patient had a planning CT and contours of gross tumor volume (GTV) and esophagus (ESO). A total of 355 features including clinical parameter (CP), GTV and ESO (GTV&ESO) dose-volume histogram (DVH), GTV radiomics, and GTV&ESO dosiomics features were extracted. R&D features were categorized as first- (L1), second- (L2), higher-order (L3) statistics, and three combined groups, L1 + L2, L2 + L3 and L1 + L2 + L3. Multi-view texture analysis was performed to identify optimal R&D input features. In the training set (194 earlier patients), feature selection was performed using Boruta algorithm followed by collinearity removal based on variance inflation factor. Machine-learning models were developed using Laplacian kernel support vector machine (lpSVM), deep neural network (DNN) and their averaged ensemble classifiers. Prediction performance was tested on an independent test set (194 more recent patients), and compared among seven different input conditions: CP-only, DVH-only, R&D-only, DVH + CP, R&D + CP, R&D + DVH and R&D + DVH + CP. Combined GTV L1 + L2 + L3 radiomics and GTV&ESO L3 dosiomics were identified as optimal input features, which achieved the best performance with an ensemble classifier (AUC = 0.710), having statistically significantly higher predictability compared with DVH and/or CP features (p < 0.05). When this performance was compared to that with full R&D-only features which reflect traditional single-view data, there was a statistically significant difference (p < 0.05). Using optimized multi-view R&D input features is beneficial for predicting early WL in lung cancer radiotherapy, leading to improved performance compared to using conventional DVH and/or CP features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明夏波发布了新的文献求助10
刚刚
称心的晓霜完成签到,获得积分20
2秒前
4秒前
小马甲应助激昂的吐司采纳,获得10
5秒前
优美凡白发布了新的文献求助10
6秒前
Nemo完成签到,获得积分10
7秒前
江大橘发布了新的文献求助10
9秒前
希哩哩完成签到 ,获得积分10
10秒前
LLL完成签到 ,获得积分10
10秒前
Ava应助Tang采纳,获得10
10秒前
拉长的南松完成签到 ,获得积分10
11秒前
12秒前
马走日发布了新的文献求助10
15秒前
fang发布了新的文献求助10
19秒前
语行完成签到 ,获得积分10
19秒前
jyy应助自由的白梦采纳,获得10
20秒前
20秒前
24秒前
qaxt完成签到,获得积分10
24秒前
甜甜如之发布了新的文献求助10
25秒前
可爱的函函应助Tang采纳,获得10
25秒前
俭朴蜜蜂完成签到 ,获得积分10
26秒前
滴嘟滴嘟完成签到 ,获得积分10
26秒前
辛勤的听莲完成签到,获得积分10
28秒前
hhhhhhhhhh完成签到 ,获得积分10
29秒前
小凯完成签到 ,获得积分10
29秒前
昔黎完成签到 ,获得积分10
29秒前
小马甲应助fang采纳,获得10
30秒前
obsession完成签到 ,获得积分10
31秒前
朱云发布了新的文献求助10
31秒前
甜甜如之完成签到,获得积分10
32秒前
让我再眯一会儿完成签到 ,获得积分10
33秒前
5430完成签到,获得积分10
35秒前
哩哩完成签到 ,获得积分10
38秒前
天天快乐应助顺利的秋天采纳,获得30
38秒前
41秒前
英姑应助晴子采纳,获得10
41秒前
小美女完成签到 ,获得积分10
44秒前
Nature发布了新的文献求助10
44秒前
yuaner完成签到,获得积分10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663955
求助须知:如何正确求助?哪些是违规求助? 4855366
关于积分的说明 15106647
捐赠科研通 4822329
什么是DOI,文献DOI怎么找? 2581405
邀请新用户注册赠送积分活动 1535540
关于科研通互助平台的介绍 1493816