An unsupervised 2D–3D deformable registration network (2D3D-RegNet) for cone-beam CT estimation

人工智能 计算机视觉 计算机科学 稳健性(进化) 锥束ct 图像配准 视野 投影(关系代数) 计算机断层摄影术 算法 图像(数学) 医学 放射科 生物化学 基因 化学
作者
You Zhang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (7): 074001-074001 被引量:21
标识
DOI:10.1088/1361-6560/abe9f6
摘要

Abstract Acquiring CBCTs from a limited scan angle can help to reduce the imaging time, save the imaging dose, and allow continuous target localizations through arc-based treatments with high temporal resolution. However, insufficient scan angle sampling leads to severe distortions and artifacts in the reconstructed CBCT images, limiting their clinical applicability. 2D–3D deformable registration can map a prior fully-sampled CT/CBCT volume to estimate a new CBCT, based on limited-angle on-board cone-beam projections. The resulting CBCT images estimated by 2D–3D deformable registration can successfully suppress the distortions and artifacts, and reflect up-to-date patient anatomy. However, traditional iterative 2D–3D deformable registration algorithm is very computationally expensive and time-consuming, which takes hours to generate a high quality deformation vector field (DVF) and the CBCT. In this work, we developed an unsupervised, end-to-end, 2D–3D deformable registration framework using convolutional neural networks (2D3D-RegNet) to address the speed bottleneck of the conventional iterative 2D–3D deformable registration algorithm. The 2D3D-RegNet was able to solve the DVFs within 5 seconds for 90 orthogonally-arranged projections covering a combined 90° scan angle, with DVF accuracy superior to 3D–3D deformable registration, and on par with the conventional 2D–3D deformable registration algorithm. We also performed a preliminary robustness analysis of 2D3D-RegNet towards projection angular sampling frequency variations, as well as scan angle offsets. The synergy of 2D3D-RegNet with biomechanical modeling was also evaluated, and demonstrated that 2D3D-RegNet can function as a fast DVF solution core for further DVF refinement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尊敬的夏槐完成签到,获得积分10
1秒前
小野狼发布了新的文献求助10
1秒前
2秒前
满唐完成签到 ,获得积分10
3秒前
Kevin发布了新的文献求助10
3秒前
4秒前
小蘑菇应助青灿笑采纳,获得10
4秒前
5秒前
善良的迎夏完成签到,获得积分10
6秒前
7秒前
GJL发布了新的文献求助10
7秒前
8秒前
WeiBao发布了新的文献求助10
9秒前
9秒前
科研小白完成签到,获得积分10
10秒前
10秒前
长vefvj发布了新的文献求助30
11秒前
eschew完成签到,获得积分10
12秒前
清脆安南完成签到 ,获得积分10
12秒前
yummy发布了新的文献求助10
13秒前
14秒前
14秒前
Lucas应助阿萨德采纳,获得10
14秒前
rosyw完成签到,获得积分10
17秒前
18秒前
星辰大海应助WeiBao采纳,获得10
18秒前
思源应助Della采纳,获得10
19秒前
19秒前
桐桐应助梅子黄时雨采纳,获得10
19秒前
姣姣发布了新的文献求助10
19秒前
科研狗完成签到,获得积分10
20秒前
yefeng发布了新的文献求助10
20秒前
肖旻完成签到,获得积分10
20秒前
ppy完成签到,获得积分10
21秒前
21秒前
wyy发布了新的文献求助10
22秒前
Orange应助正电荷采纳,获得10
22秒前
安好发布了新的文献求助10
22秒前
细心无声完成签到 ,获得积分10
23秒前
and999发布了新的文献求助10
24秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151673
求助须知:如何正确求助?哪些是违规求助? 2803099
关于积分的说明 7851899
捐赠科研通 2460474
什么是DOI,文献DOI怎么找? 1309813
科研通“疑难数据库(出版商)”最低求助积分说明 629061
版权声明 601760