Infra-red line camera data-driven edge detector in UAV forest fire monitoring

能见度 计算机科学 探测器 过程(计算) GSM演进的增强数据速率 人工智能 Canny边缘检测器 火灾探测 计算机视觉 实时计算 模拟 遥感 边缘检测 图像处理 工程类 图像(数学) 光学 建筑工程 电信 物理 地质学 操作系统
作者
Francesco De Vivo,Manuela Battipede,Eric Johnson
出处
期刊:Aerospace Science and Technology [Elsevier]
卷期号:111: 106574-106574 被引量:29
标识
DOI:10.1016/j.ast.2021.106574
摘要

The accurate prediction of the wildfire spread-rate is a challenging task, due to the high number of parameters involved and the underlying complex dynamic multi-physics processes which drive the phenomenon. For these reasons, data-driven prediction tools could be useful to provide a more accurate prediction of the fire front. In this scenario, systematic fire data gathering becomes crucial and using an Unmanned Aircraft Vehicle (UAV) is strategic to reduce considerably the risk associated with flying a manned aircraft into low visibility and extremely turbulent air, sustained by the fire-induced convective motions. Moreover the employment of the UAV is beneficial, as the possibility of flying at very low altitudes maximizes the on-board Electro-Optical (EO) sensor effectiveness. The aim is to develop a real time data-driven fire propagator to support wildfire fighting operations and to facilitate the risk assessment and decision making process. In order to collect data, the fire front position has to be measured using an infra-red (IR) camera so as to overcome the limitations associated to a visible camera in low visibility (smoky)conditions and night operations. To reduce the computational cost associated to the image processing, a Line Camera (LC) configuration has been preferred. Because of the mono-dimensionality of the measure, classical edge detector, like the Canny method, or contour algorithms, developed for 2D images, can not be applied. In this paper, a mono-dimensional noise-resistant algorithm for edge detection is presented. The generality of the proposed method opens the possibility to a variety of heterogeneous problems of different nature. The robustness of this algorithm resides in the use of known physical characteristics of the target of interest, to increase the feature edge discontinuity. Its straightforwardness guarantees fast computation, making it very attractive for real time image processing, remote sensing applications and for UAV surveillance tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ARES昔年完成签到,获得积分10
刚刚
能姐发布了新的文献求助10
刚刚
刚刚
Owen应助果粒橙橙子采纳,获得10
刚刚
薖上完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
1秒前
kkk发布了新的文献求助10
1秒前
英姑应助黑叔叔采纳,获得10
2秒前
零源发布了新的文献求助10
2秒前
renpp发布了新的文献求助10
2秒前
勇胜完成签到,获得积分20
2秒前
小仙女发布了新的文献求助10
2秒前
111966完成签到,获得积分10
3秒前
adu发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
Areeha发布了新的文献求助10
4秒前
4秒前
星星完成签到,获得积分10
4秒前
酷波er应助零源采纳,获得10
5秒前
5秒前
carly发布了新的文献求助10
5秒前
婉君完成签到,获得积分10
5秒前
5秒前
5秒前
un发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
开朗阁完成签到,获得积分10
6秒前
6秒前
孤影完成签到,获得积分10
6秒前
科研通AI2S应助乌波饲养员采纳,获得10
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759534
求助须知:如何正确求助?哪些是违规求助? 5520722
关于积分的说明 15394460
捐赠科研通 4896615
什么是DOI,文献DOI怎么找? 2633799
邀请新用户注册赠送积分活动 1581879
关于科研通互助平台的介绍 1537300