Infra-red line camera data-driven edge detector in UAV forest fire monitoring

能见度 计算机科学 探测器 过程(计算) GSM演进的增强数据速率 人工智能 Canny边缘检测器 火灾探测 计算机视觉 实时计算 模拟 遥感 边缘检测 图像处理 工程类 图像(数学) 光学 建筑工程 电信 物理 地质学 操作系统
作者
Francesco De Vivo,Manuela Battipede,Eric Johnson
出处
期刊:Aerospace Science and Technology [Elsevier]
卷期号:111: 106574-106574 被引量:29
标识
DOI:10.1016/j.ast.2021.106574
摘要

The accurate prediction of the wildfire spread-rate is a challenging task, due to the high number of parameters involved and the underlying complex dynamic multi-physics processes which drive the phenomenon. For these reasons, data-driven prediction tools could be useful to provide a more accurate prediction of the fire front. In this scenario, systematic fire data gathering becomes crucial and using an Unmanned Aircraft Vehicle (UAV) is strategic to reduce considerably the risk associated with flying a manned aircraft into low visibility and extremely turbulent air, sustained by the fire-induced convective motions. Moreover the employment of the UAV is beneficial, as the possibility of flying at very low altitudes maximizes the on-board Electro-Optical (EO) sensor effectiveness. The aim is to develop a real time data-driven fire propagator to support wildfire fighting operations and to facilitate the risk assessment and decision making process. In order to collect data, the fire front position has to be measured using an infra-red (IR) camera so as to overcome the limitations associated to a visible camera in low visibility (smoky)conditions and night operations. To reduce the computational cost associated to the image processing, a Line Camera (LC) configuration has been preferred. Because of the mono-dimensionality of the measure, classical edge detector, like the Canny method, or contour algorithms, developed for 2D images, can not be applied. In this paper, a mono-dimensional noise-resistant algorithm for edge detection is presented. The generality of the proposed method opens the possibility to a variety of heterogeneous problems of different nature. The robustness of this algorithm resides in the use of known physical characteristics of the target of interest, to increase the feature edge discontinuity. Its straightforwardness guarantees fast computation, making it very attractive for real time image processing, remote sensing applications and for UAV surveillance tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MISSINGL完成签到 ,获得积分10
刚刚
PetrichorF完成签到 ,获得积分10
2秒前
5秒前
给导师惹事的憨憨憨完成签到,获得积分10
6秒前
多情的青曼完成签到,获得积分10
8秒前
GLY完成签到,获得积分10
10秒前
10秒前
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
wanci应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得30
10秒前
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
完美世界应助Luo采纳,获得10
10秒前
我是老大应助bk采纳,获得10
11秒前
11秒前
14秒前
顾矜应助Miriammmmm采纳,获得10
15秒前
MinghaoLi发布了新的文献求助10
15秒前
miao发布了新的文献求助10
15秒前
科目三应助GLY采纳,获得10
16秒前
17秒前
17秒前
科研达人发布了新的文献求助30
18秒前
Akim应助李萍萍采纳,获得10
19秒前
babyshelling完成签到,获得积分10
20秒前
研友_VZG7GZ应助Atlantis采纳,获得10
22秒前
24秒前
桐桐应助LXX不钻牛角尖采纳,获得30
25秒前
在水一方应助ad采纳,获得10
25秒前
科研达人完成签到,获得积分20
28秒前
yuyu应助发呆夜师傅采纳,获得10
29秒前
33秒前
35秒前
36秒前
37秒前
Ship完成签到,获得积分10
37秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
A History of Rice in China 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5874980
求助须知:如何正确求助?哪些是违规求助? 6512400
关于积分的说明 15675637
捐赠科研通 4992660
什么是DOI,文献DOI怎么找? 2691250
邀请新用户注册赠送积分活动 1633584
关于科研通互助平台的介绍 1591214