Infra-red line camera data-driven edge detector in UAV forest fire monitoring

能见度 计算机科学 探测器 过程(计算) GSM演进的增强数据速率 人工智能 Canny边缘检测器 火灾探测 计算机视觉 实时计算 模拟 遥感 边缘检测 图像处理 工程类 图像(数学) 光学 电信 操作系统 物理 地质学 建筑工程
作者
Francesco De Vivo,Manuela Battipede,Eric Johnson
出处
期刊:Aerospace Science and Technology [Elsevier BV]
卷期号:111: 106574-106574 被引量:29
标识
DOI:10.1016/j.ast.2021.106574
摘要

The accurate prediction of the wildfire spread-rate is a challenging task, due to the high number of parameters involved and the underlying complex dynamic multi-physics processes which drive the phenomenon. For these reasons, data-driven prediction tools could be useful to provide a more accurate prediction of the fire front. In this scenario, systematic fire data gathering becomes crucial and using an Unmanned Aircraft Vehicle (UAV) is strategic to reduce considerably the risk associated with flying a manned aircraft into low visibility and extremely turbulent air, sustained by the fire-induced convective motions. Moreover the employment of the UAV is beneficial, as the possibility of flying at very low altitudes maximizes the on-board Electro-Optical (EO) sensor effectiveness. The aim is to develop a real time data-driven fire propagator to support wildfire fighting operations and to facilitate the risk assessment and decision making process. In order to collect data, the fire front position has to be measured using an infra-red (IR) camera so as to overcome the limitations associated to a visible camera in low visibility (smoky)conditions and night operations. To reduce the computational cost associated to the image processing, a Line Camera (LC) configuration has been preferred. Because of the mono-dimensionality of the measure, classical edge detector, like the Canny method, or contour algorithms, developed for 2D images, can not be applied. In this paper, a mono-dimensional noise-resistant algorithm for edge detection is presented. The generality of the proposed method opens the possibility to a variety of heterogeneous problems of different nature. The robustness of this algorithm resides in the use of known physical characteristics of the target of interest, to increase the feature edge discontinuity. Its straightforwardness guarantees fast computation, making it very attractive for real time image processing, remote sensing applications and for UAV surveillance tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
某某某完成签到,获得积分10
刚刚
桐桐应助李不开你采纳,获得10
1秒前
1秒前
cjy完成签到,获得积分10
1秒前
1秒前
英姑应助仗炮由纪采纳,获得10
1秒前
王大敏给王大敏的求助进行了留言
2秒前
mingxuan完成签到,获得积分10
2秒前
殷勤的咖啡完成签到,获得积分10
3秒前
希望天下0贩的0应助11采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
今后应助zhao采纳,获得10
3秒前
英俊的铭应助su采纳,获得10
4秒前
4秒前
5秒前
夏夜微凉完成签到,获得积分10
6秒前
6秒前
6秒前
花花发布了新的文献求助20
6秒前
攒星星完成签到,获得积分10
6秒前
sugarballer完成签到,获得积分10
6秒前
7秒前
齐小妮完成签到,获得积分20
7秒前
卡卡卡卡卡卡完成签到,获得积分10
8秒前
imemorizedpi完成签到,获得积分10
8秒前
dong发布了新的文献求助30
8秒前
8秒前
李振博发布了新的文献求助10
9秒前
yl发布了新的文献求助10
9秒前
9秒前
个性的紫菜应助江鑫楷采纳,获得10
9秒前
李牧发布了新的文献求助10
10秒前
高大的向南完成签到,获得积分10
10秒前
xdf完成签到,获得积分10
10秒前
打打应助sdd采纳,获得10
10秒前
nigthsun完成签到,获得积分20
11秒前
爱学习的小常完成签到,获得积分10
11秒前
11秒前
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603838
求助须知:如何正确求助?哪些是违规求助? 4012374
关于积分的说明 12423535
捐赠科研通 3692896
什么是DOI,文献DOI怎么找? 2035955
邀请新用户注册赠送积分活动 1069072
科研通“疑难数据库(出版商)”最低求助积分说明 953559