Infra-red line camera data-driven edge detector in UAV forest fire monitoring

能见度 计算机科学 探测器 过程(计算) GSM演进的增强数据速率 人工智能 Canny边缘检测器 火灾探测 计算机视觉 实时计算 模拟 遥感 边缘检测 图像处理 工程类 图像(数学) 光学 电信 操作系统 物理 地质学 建筑工程
作者
Francesco De Vivo,Manuela Battipede,Eric Johnson
出处
期刊:Aerospace Science and Technology [Elsevier]
卷期号:111: 106574-106574 被引量:29
标识
DOI:10.1016/j.ast.2021.106574
摘要

The accurate prediction of the wildfire spread-rate is a challenging task, due to the high number of parameters involved and the underlying complex dynamic multi-physics processes which drive the phenomenon. For these reasons, data-driven prediction tools could be useful to provide a more accurate prediction of the fire front. In this scenario, systematic fire data gathering becomes crucial and using an Unmanned Aircraft Vehicle (UAV) is strategic to reduce considerably the risk associated with flying a manned aircraft into low visibility and extremely turbulent air, sustained by the fire-induced convective motions. Moreover the employment of the UAV is beneficial, as the possibility of flying at very low altitudes maximizes the on-board Electro-Optical (EO) sensor effectiveness. The aim is to develop a real time data-driven fire propagator to support wildfire fighting operations and to facilitate the risk assessment and decision making process. In order to collect data, the fire front position has to be measured using an infra-red (IR) camera so as to overcome the limitations associated to a visible camera in low visibility (smoky)conditions and night operations. To reduce the computational cost associated to the image processing, a Line Camera (LC) configuration has been preferred. Because of the mono-dimensionality of the measure, classical edge detector, like the Canny method, or contour algorithms, developed for 2D images, can not be applied. In this paper, a mono-dimensional noise-resistant algorithm for edge detection is presented. The generality of the proposed method opens the possibility to a variety of heterogeneous problems of different nature. The robustness of this algorithm resides in the use of known physical characteristics of the target of interest, to increase the feature edge discontinuity. Its straightforwardness guarantees fast computation, making it very attractive for real time image processing, remote sensing applications and for UAV surveillance tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仁爱的乐枫完成签到,获得积分10
刚刚
刚刚
金润完成签到,获得积分10
1秒前
ZZ完成签到,获得积分10
1秒前
AteeqBaloch发布了新的文献求助10
2秒前
PaulLao完成签到,获得积分10
2秒前
2秒前
fleee发布了新的文献求助10
2秒前
2秒前
3秒前
Luyao发布了新的文献求助10
3秒前
海派Hi完成签到 ,获得积分10
3秒前
依依完成签到 ,获得积分10
4秒前
李健的小迷弟应助库外采纳,获得10
4秒前
yi完成签到 ,获得积分10
4秒前
kbj发布了新的文献求助10
4秒前
6秒前
佳言2009完成签到,获得积分10
7秒前
汉堡包应助漂亮的初蓝采纳,获得10
7秒前
hohokuz发布了新的文献求助10
8秒前
莫里完成签到,获得积分10
8秒前
zxz发布了新的文献求助10
8秒前
Luyao完成签到,获得积分10
9秒前
9秒前
9秒前
马甲完成签到,获得积分10
9秒前
科研通AI5应助xdf采纳,获得10
9秒前
周周完成签到,获得积分10
9秒前
Holybot完成签到,获得积分10
9秒前
11秒前
只道寻常完成签到,获得积分10
11秒前
fleee完成签到,获得积分10
11秒前
swsx1317发布了新的文献求助10
11秒前
12秒前
雪白涵山完成签到,获得积分20
12秒前
liao完成签到 ,获得积分10
12秒前
hu970发布了新的文献求助30
12秒前
科研小白发布了新的文献求助20
13秒前
SciGPT应助白小白采纳,获得10
13秒前
shuxi完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762