Infra-red line camera data-driven edge detector in UAV forest fire monitoring

能见度 计算机科学 探测器 过程(计算) GSM演进的增强数据速率 人工智能 Canny边缘检测器 火灾探测 计算机视觉 实时计算 模拟 遥感 边缘检测 图像处理 工程类 图像(数学) 光学 建筑工程 电信 物理 地质学 操作系统
作者
Francesco De Vivo,Manuela Battipede,Eric Johnson
出处
期刊:Aerospace Science and Technology [Elsevier]
卷期号:111: 106574-106574 被引量:29
标识
DOI:10.1016/j.ast.2021.106574
摘要

The accurate prediction of the wildfire spread-rate is a challenging task, due to the high number of parameters involved and the underlying complex dynamic multi-physics processes which drive the phenomenon. For these reasons, data-driven prediction tools could be useful to provide a more accurate prediction of the fire front. In this scenario, systematic fire data gathering becomes crucial and using an Unmanned Aircraft Vehicle (UAV) is strategic to reduce considerably the risk associated with flying a manned aircraft into low visibility and extremely turbulent air, sustained by the fire-induced convective motions. Moreover the employment of the UAV is beneficial, as the possibility of flying at very low altitudes maximizes the on-board Electro-Optical (EO) sensor effectiveness. The aim is to develop a real time data-driven fire propagator to support wildfire fighting operations and to facilitate the risk assessment and decision making process. In order to collect data, the fire front position has to be measured using an infra-red (IR) camera so as to overcome the limitations associated to a visible camera in low visibility (smoky)conditions and night operations. To reduce the computational cost associated to the image processing, a Line Camera (LC) configuration has been preferred. Because of the mono-dimensionality of the measure, classical edge detector, like the Canny method, or contour algorithms, developed for 2D images, can not be applied. In this paper, a mono-dimensional noise-resistant algorithm for edge detection is presented. The generality of the proposed method opens the possibility to a variety of heterogeneous problems of different nature. The robustness of this algorithm resides in the use of known physical characteristics of the target of interest, to increase the feature edge discontinuity. Its straightforwardness guarantees fast computation, making it very attractive for real time image processing, remote sensing applications and for UAV surveillance tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助一树春风采纳,获得10
3秒前
yujinglu发布了新的文献求助10
4秒前
HIT_WXY完成签到,获得积分10
4秒前
东方既白应助KYRIAL采纳,获得10
4秒前
美丽易云发布了新的文献求助10
6秒前
长情寒凝完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
汉堡包应助老伯unit采纳,获得10
10秒前
Charlie完成签到 ,获得积分10
10秒前
11秒前
奥里给完成签到 ,获得积分10
11秒前
wanci应助朴实的百招采纳,获得10
12秒前
14秒前
萧水白应助KYRIAL采纳,获得10
15秒前
czl12138发布了新的文献求助10
16秒前
16秒前
18秒前
18秒前
18秒前
kyk完成签到,获得积分10
18秒前
正直涔完成签到 ,获得积分10
18秒前
独特煎蛋完成签到,获得积分10
19秒前
幽默尔蓉发布了新的文献求助10
19秒前
无花果应助子车半烟采纳,获得10
20秒前
Milesma发布了新的文献求助10
20秒前
冷静新烟发布了新的文献求助10
20秒前
21秒前
whn发布了新的文献求助10
22秒前
满姣发布了新的文献求助10
22秒前
kyk发布了新的文献求助10
22秒前
23秒前
25秒前
WangY1263发布了新的文献求助20
26秒前
26秒前
萧水白应助KYRIAL采纳,获得10
26秒前
李书荣完成签到 ,获得积分10
27秒前
sirius发布了新的文献求助10
27秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142187
求助须知:如何正确求助?哪些是违规求助? 2793134
关于积分的说明 7805663
捐赠科研通 2449433
什么是DOI,文献DOI怎么找? 1303289
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291