材料科学
复合材料
石墨
炭黑
聚丙烯
压缩成型
电阻率和电导率
碳纳米管
热导率
电阻和电导
造型(装饰)
导电体
电解质
电导率
填料(材料)
抗弯强度
电极
化学
天然橡胶
物理化学
工程类
电气工程
模具
作者
Roman Bühler,Moritz Thommen,Jean‐Marc Le Canut,Jean‐Francois Weber,Christian Rytka,Panagiota Tsotra
出处
期刊:Fuel Cells
[Wiley]
日期:2021-02-15
卷期号:21 (2): 155-163
被引量:12
标识
DOI:10.1002/fuce.201900232
摘要
Abstract This work focuses on the development of innovative polymer‐based composites suitable for fuel cell bipolar plates. The developed composites need to fulfil the given requirements concerning electrical and thermal conductivity, mechanical properties, and additionally ensure easy implementation in industry. Various potentially suitable electrically conductive fillers, such as graphite, carbon black, carbon fibers, carbon nanotubes, and expanded graphite are added to a polypropylene (PP) matrix. The samples are tested with regard to their through‐plane electrical conductivity, in‐plane thermal conductivity, flexural properties, and corrosion resistance. The effect of plate thickness and filler composition is systematically investigated. It is also found that the electrode area and the applied pressure during the electrical resistance measurements have a significant effect on the electrical conductivity. The materials show very good processability with compression molding, which results in the maximum electrical conductivity of 46 S cm −1 , using a multi‐filler approach with carbon‐based fillers of different forms and sizes. These results meet or even exceed those found in the literature, and it is strongly believed that optimization of the manufacturing process can result in an electrical conductivity value above the target of 50 S cm −1 .
科研通智能强力驱动
Strongly Powered by AbleSci AI