Monitoring plant diseases and pests through remote sensing technology: A review

遥感 激光雷达 计算机科学 环境监测 人工智能 数据挖掘 环境科学 地理 环境工程
作者
Jingcheng Zhang,Yanbo Huang,Ruiliang Pu,Pablo González‐Moreno,Lin Yuan,Kaihua Wu,Wenjiang Huang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:165: 104943-104943 被引量:418
标识
DOI:10.1016/j.compag.2019.104943
摘要

Plant diseases and pests endanger agriculture and forestry significantly around the world. The implementation of non-contact, highly-efficient, and affordable methods for detecting and monitoring plant diseases and pests over vast areas could greatly facilitate plant protection. In this respect, different forms of remote sensing methods have been introduced for detecting and monitoring plant diseases and pests in many ways. This review outlines the state-of-the-art research achievements in relation to sensing technologies, feature extraction, and monitoring algorithms that have been conducted at multiple scales. Based on their characteristics and maturity in detecting and monitoring plant diseases and pests, sensing systems are classified into groups that include: visible & near-infrared spectral sensors (VIS-NIR); fluorescence and thermal sensors; and synthetic aperture radar (SAR) and light detection and ranging (Lidar) systems. Based on the data acquired from these remote sensing systems and sensitivity analysis, a variety of remote sensing features are proposed and identified as surrogates in the detection and monitoring processes. They include (1) optical, fluorescence, and thermal parameters; (2) image-based landscape features; and (3) features associated with habitat suitability. We also review the algorithms that link the remote sensing features with the occurrence of plant diseases and pests for identifying, differentiating and determining severity of diseases and pests over large areas. The algorithms including statistical discriminant analyses, machine learning algorithms, regression-based models and spectral unmixing algorithms using data collected at a single time or multiple times. Finally, according to the review, we provide a general framework to facilitate the monitoring of an unknown disease or pest highlighting future challenges and trends.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YQT发布了新的文献求助10
2秒前
3秒前
所所应助fffzy采纳,获得10
3秒前
ThermalFluid完成签到,获得积分10
4秒前
DENG完成签到,获得积分10
7秒前
WaveletZ完成签到,获得积分10
8秒前
CipherSage应助李朝富采纳,获得10
8秒前
善学以致用应助蓝颜采纳,获得10
9秒前
9秒前
lm完成签到 ,获得积分20
9秒前
小医小鱼发布了新的文献求助20
11秒前
科研废完成签到,获得积分10
12秒前
千早爱音完成签到 ,获得积分10
12秒前
17秒前
酷波er应助甜美早晨采纳,获得10
18秒前
19秒前
顺心若魔完成签到,获得积分20
20秒前
Fashioner8351完成签到,获得积分10
20秒前
21秒前
凡平完成签到,获得积分10
21秒前
YQT完成签到,获得积分10
22秒前
养猪人完成签到,获得积分10
22秒前
李朝富发布了新的文献求助10
24秒前
黄叶飞发布了新的文献求助10
24秒前
玩命的毛衣完成签到 ,获得积分10
25秒前
Vivian发布了新的文献求助10
25秒前
星辰大海应助莴苣采纳,获得10
25秒前
25秒前
希望天下0贩的0应助min采纳,获得10
26秒前
无花果应助感动哈密瓜采纳,获得10
27秒前
PWG完成签到,获得积分10
27秒前
Sunflower发布了新的文献求助10
29秒前
请您多关心完成签到 ,获得积分10
29秒前
bkagyin应助迪克牛仔采纳,获得10
31秒前
yznfly应助hg采纳,获得20
33秒前
yznfly应助小科采纳,获得30
33秒前
roger发布了新的文献求助10
34秒前
35秒前
汉堡包应助喜悦的斓采纳,获得10
35秒前
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965950
求助须知:如何正确求助?哪些是违规求助? 3511289
关于积分的说明 11157176
捐赠科研通 3245859
什么是DOI,文献DOI怎么找? 1793182
邀请新用户注册赠送积分活动 874245
科研通“疑难数据库(出版商)”最低求助积分说明 804286