Monitoring plant diseases and pests through remote sensing technology: A review

遥感 激光雷达 计算机科学 环境监测 人工智能 数据挖掘 环境科学 地理 环境工程
作者
Jingcheng Zhang,Yanbo Huang,Ruiliang Pu,Pablo González‐Moreno,Lin Yuan,Kaihua Wu,Wenjiang Huang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:165: 104943-104943 被引量:418
标识
DOI:10.1016/j.compag.2019.104943
摘要

Plant diseases and pests endanger agriculture and forestry significantly around the world. The implementation of non-contact, highly-efficient, and affordable methods for detecting and monitoring plant diseases and pests over vast areas could greatly facilitate plant protection. In this respect, different forms of remote sensing methods have been introduced for detecting and monitoring plant diseases and pests in many ways. This review outlines the state-of-the-art research achievements in relation to sensing technologies, feature extraction, and monitoring algorithms that have been conducted at multiple scales. Based on their characteristics and maturity in detecting and monitoring plant diseases and pests, sensing systems are classified into groups that include: visible & near-infrared spectral sensors (VIS-NIR); fluorescence and thermal sensors; and synthetic aperture radar (SAR) and light detection and ranging (Lidar) systems. Based on the data acquired from these remote sensing systems and sensitivity analysis, a variety of remote sensing features are proposed and identified as surrogates in the detection and monitoring processes. They include (1) optical, fluorescence, and thermal parameters; (2) image-based landscape features; and (3) features associated with habitat suitability. We also review the algorithms that link the remote sensing features with the occurrence of plant diseases and pests for identifying, differentiating and determining severity of diseases and pests over large areas. The algorithms including statistical discriminant analyses, machine learning algorithms, regression-based models and spectral unmixing algorithms using data collected at a single time or multiple times. Finally, according to the review, we provide a general framework to facilitate the monitoring of an unknown disease or pest highlighting future challenges and trends.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jzhang应助tmpstlml采纳,获得10
1秒前
微笑的南露完成签到 ,获得积分10
1秒前
豌豆关注了科研通微信公众号
1秒前
4秒前
笨笨善若完成签到,获得积分10
6秒前
hs完成签到,获得积分20
6秒前
ZHANGMANLI0422完成签到,获得积分10
6秒前
susu关注了科研通微信公众号
8秒前
DYuH23完成签到,获得积分10
9秒前
10秒前
爱静静应助DHL采纳,获得10
10秒前
10秒前
sunny661104完成签到 ,获得积分10
11秒前
简单完成签到 ,获得积分10
11秒前
尘林发布了新的文献求助10
11秒前
Z-先森完成签到,获得积分0
12秒前
苏源智发布了新的文献求助10
12秒前
伯赏诗霜完成签到,获得积分10
13秒前
NN应助LIn采纳,获得10
14秒前
14秒前
超级无敌学术苦瓜完成签到,获得积分10
14秒前
14秒前
Zn应助111采纳,获得10
15秒前
舒适静丹完成签到,获得积分10
16秒前
丽颖发布了新的文献求助10
17秒前
cui完成签到,获得积分10
17秒前
lixm完成签到,获得积分10
17秒前
yyyyy语言完成签到,获得积分10
17秒前
栗子完成签到,获得积分10
18秒前
卧镁铀钳完成签到 ,获得积分10
19秒前
DHL完成签到,获得积分10
20秒前
TT发布了新的文献求助10
20秒前
小蘑菇应助科研通管家采纳,获得30
21秒前
terence应助科研通管家采纳,获得30
21秒前
21秒前
小二郎应助科研通管家采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
Akim应助科研通管家采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849