Monitoring plant diseases and pests through remote sensing technology: A review

遥感 激光雷达 计算机科学 环境监测 人工智能 数据挖掘 环境科学 地理 环境工程
作者
Jingcheng Zhang,Yanbo Huang,Ruiliang Pu,Pablo González‐Moreno,Lin Yuan,Kaihua Wu,Wenjiang Huang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:165: 104943-104943 被引量:418
标识
DOI:10.1016/j.compag.2019.104943
摘要

Plant diseases and pests endanger agriculture and forestry significantly around the world. The implementation of non-contact, highly-efficient, and affordable methods for detecting and monitoring plant diseases and pests over vast areas could greatly facilitate plant protection. In this respect, different forms of remote sensing methods have been introduced for detecting and monitoring plant diseases and pests in many ways. This review outlines the state-of-the-art research achievements in relation to sensing technologies, feature extraction, and monitoring algorithms that have been conducted at multiple scales. Based on their characteristics and maturity in detecting and monitoring plant diseases and pests, sensing systems are classified into groups that include: visible & near-infrared spectral sensors (VIS-NIR); fluorescence and thermal sensors; and synthetic aperture radar (SAR) and light detection and ranging (Lidar) systems. Based on the data acquired from these remote sensing systems and sensitivity analysis, a variety of remote sensing features are proposed and identified as surrogates in the detection and monitoring processes. They include (1) optical, fluorescence, and thermal parameters; (2) image-based landscape features; and (3) features associated with habitat suitability. We also review the algorithms that link the remote sensing features with the occurrence of plant diseases and pests for identifying, differentiating and determining severity of diseases and pests over large areas. The algorithms including statistical discriminant analyses, machine learning algorithms, regression-based models and spectral unmixing algorithms using data collected at a single time or multiple times. Finally, according to the review, we provide a general framework to facilitate the monitoring of an unknown disease or pest highlighting future challenges and trends.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助陈徐钖采纳,获得10
刚刚
666完成签到,获得积分20
1秒前
薰衣草发布了新的文献求助10
2秒前
coco发布了新的文献求助10
2秒前
共享精神应助zhuminghui采纳,获得10
2秒前
冷傲奇迹发布了新的文献求助10
3秒前
在水一方应助ebangdeng采纳,获得10
3秒前
儒雅龙完成签到 ,获得积分10
3秒前
4秒前
4秒前
4秒前
4秒前
兴奋的胡桃完成签到 ,获得积分10
5秒前
7秒前
胖橙发布了新的文献求助200
7秒前
CipherSage应助callous采纳,获得10
7秒前
7秒前
奋斗跳跳糖完成签到,获得积分10
8秒前
8秒前
薰衣草完成签到,获得积分10
8秒前
田様应助戒不掉的烟采纳,获得10
8秒前
李成哲发布了新的文献求助10
9秒前
10秒前
斯文问旋发布了新的文献求助10
11秒前
ebangdeng发布了新的文献求助10
11秒前
550发布了新的文献求助10
11秒前
小二郎应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
12秒前
Sevendesu应助科研通管家采纳,获得10
12秒前
田様应助科研通管家采纳,获得10
12秒前
早发论文应助科研通管家采纳,获得10
12秒前
lilivite应助科研通管家采纳,获得20
12秒前
Owen应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243096
求助须知:如何正确求助?哪些是违规求助? 2887115
关于积分的说明 8246636
捐赠科研通 2555713
什么是DOI,文献DOI怎么找? 1383818
科研通“疑难数据库(出版商)”最低求助积分说明 649757
邀请新用户注册赠送积分活动 625631