Wasserstein Distributionally Robust Optimization: Theory and Applications in Machine Learning

稳健优化 计算机科学 数学优化 人工智能 数学
作者
Daniel Kühn,Peyman Mohajerin Esfahani,Viet Anh Nguyen,Soroosh Shafieezadeh-Abadeh
标识
DOI:10.1287/educ.2019.0198
摘要

Many decision problems in science, engineering and economics are affected by uncertain parameters whose distribution is only indirectly observable through samples. The goal of data-driven decision-making is to learn a decision from finitely many training samples that will perform well on unseen test samples. This learning task is difficult even if all training and test samples are drawn from the same distribution---especially if the dimension of the uncertainty is large relative to the training sample size. Wasserstein distributionally robust optimization seeks data-driven decisions that perform well under the most adverse distribution within a certain Wasserstein distance from a nominal distribution constructed from the training samples. In this tutorial we will argue that this approach has many conceptual and computational benefits. Most prominently, the optimal decisions can often be computed by solving tractable convex optimization problems, and they enjoy rigorous out-of-sample and asymptotic consistency guarantees. We will also show that Wasserstein distributionally robust optimization has interesting ramifications for statistical learning and motivates new approaches for fundamental learning tasks such as classification, regression, maximum likelihood estimation or minimum mean square error estimation, among others.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
333完成签到 ,获得积分10
刚刚
1秒前
mzl完成签到,获得积分10
3秒前
4秒前
5秒前
cathy完成签到,获得积分10
5秒前
xingyuliu完成签到,获得积分20
5秒前
苹果板凳发布了新的文献求助10
7秒前
水蜜桃完成签到 ,获得积分10
9秒前
kaifeiQi完成签到,获得积分10
11秒前
11秒前
anonymous完成签到,获得积分10
11秒前
12秒前
wtdd发布了新的文献求助10
12秒前
JamesPei应助bias采纳,获得10
12秒前
打打应助岳晓彤采纳,获得10
13秒前
14秒前
hadal完成签到,获得积分10
15秒前
爱lx发布了新的文献求助10
15秒前
科研不通发布了新的文献求助10
15秒前
贪玩若蕊发布了新的文献求助10
15秒前
谦让的半山完成签到 ,获得积分10
16秒前
17秒前
17秒前
whl_321发布了新的文献求助10
17秒前
17秒前
香蕉觅云应助Yatpome采纳,获得30
17秒前
18秒前
饼藏发布了新的文献求助10
19秒前
wtdd完成签到,获得积分20
19秒前
doctorma完成签到 ,获得积分10
20秒前
zzz_yue发布了新的文献求助10
23秒前
enenen发布了新的文献求助10
24秒前
24秒前
小何HUHU完成签到,获得积分10
25秒前
26秒前
无花果应助劳永杰采纳,获得10
26秒前
Famiglistmo完成签到,获得积分10
27秒前
29秒前
大个应助搞笑羽球人采纳,获得10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967872
求助须知:如何正确求助?哪些是违规求助? 3512982
关于积分的说明 11165825
捐赠科研通 3248059
什么是DOI,文献DOI怎么找? 1794090
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578