A Comprehensive Review of Dimensionality Reduction Techniques for Feature Selection and Feature Extraction

降维 计算机科学 特征选择 维数之咒 人工智能 机器学习 冗余(工程) 数据挖掘 特征提取 模式识别(心理学) 操作系统
作者
Rizgar R. Zebari,Adnan Mohsin Abdulazeez,Diyar Qader Zeebaree,Dilovan Assad Zebari,Jwan Najeeb Saeed
出处
期刊:Journal of applied science and technology trends [Interdisciplinary Publishing Academia]
卷期号:1 (1): 56-70 被引量:726
标识
DOI:10.38094/jastt1224
摘要

Due to sharp increases in data dimensions, working on every data mining or machine learning (ML) task requires more efficient techniques to get the desired results. Therefore, in recent years, researchers have proposed and developed many methods and techniques to reduce the high dimensions of data and to attain the required accuracy. To ameliorate the accuracy of learning features as well as to decrease the training time dimensionality reduction is used as a pre-processing step, which can eliminate irrelevant data, noise, and redundant features. Dimensionality reduction (DR) has been performed based on two main methods, which are feature selection (FS) and feature extraction (FE). FS is considered an important method because data is generated continuously at an ever-increasing rate; some serious dimensionality problems can be reduced with this method, such as decreasing redundancy effectively, eliminating irrelevant data, and ameliorating result comprehensibility. Moreover, FE transacts with the problem of finding the most distinctive, informative, and decreased set of features to ameliorate the efficiency of both the processing and storage of data. This paper offers a comprehensive approach to FS and FE in the scope of DR. Moreover, the details of each paper, such as used algorithms/approaches, datasets, classifiers, and achieved results are comprehensively analyzed and summarized. Besides, a systematic discussion of all of the reviewed methods to highlight authors' trends, determining the method(s) has been done, which significantly reduced computational time, and selecting the most accurate classifiers. As a result, the different types of both methods have been discussed and analyzed the findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
sevenvictory应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
鱼会淹死吗应助科研通管家采纳,获得100
1秒前
1秒前
1秒前
1秒前
1秒前
大模型应助科研通管家采纳,获得10
1秒前
wwc完成签到,获得积分10
1秒前
1秒前
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
昵称被注册完了完成签到,获得积分10
2秒前
2秒前
LL完成签到 ,获得积分10
2秒前
2秒前
庸人何必自扰完成签到,获得积分10
3秒前
一禾生发布了新的文献求助10
3秒前
123456完成签到,获得积分10
3秒前
岩追研发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
龙仔子完成签到,获得积分10
4秒前
英姑应助为神指路采纳,获得10
4秒前
5秒前
5秒前
Owen应助陈文学采纳,获得10
5秒前
博修发布了新的文献求助200
5秒前
agoni完成签到,获得积分10
6秒前
7秒前
龙仔子发布了新的文献求助10
7秒前
64658应助可乐不加冰采纳,获得10
7秒前
3237507683发布了新的文献求助10
7秒前
8秒前
wendinfgmei发布了新的文献求助10
8秒前
yikeyaowanzi发布了新的文献求助10
8秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974643
求助须知:如何正确求助?哪些是违规求助? 3519094
关于积分的说明 11196979
捐赠科研通 3255182
什么是DOI,文献DOI怎么找? 1797700
邀请新用户注册赠送积分活动 877100
科研通“疑难数据库(出版商)”最低求助积分说明 806130