An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: cases with different types of spatial data

空间分析 空间异质性 地理信息系统 地理 统计 地图学 遥感 数学 生态学 生物
作者
Yongze Song,Jinfeng Wang,Yong Ge,Chengdong Xu
出处
期刊:Giscience & Remote Sensing [Informa]
卷期号:57 (5): 593-610 被引量:603
标识
DOI:10.1080/15481603.2020.1760434
摘要

Spatial heterogeneity represents a general characteristic of the inequitable distributions of spatial issues. The spatial stratified heterogeneity analysis investigates the heterogeneity among various strata of explanatory variables by comparing the spatial variance within strata and that between strata. The geographical detector model is a widely used technique for spatial stratified heterogeneity analysis. In the model, the spatial data discretization and spatial scale effects are fundamental issues, but they are generally determined by experience and lack accurate quantitative assessment in previous studies. To address this issue, an optimal parameters-based geographical detector (OPGD) model is developed for more accurate spatial analysis. The optimal parameters are explored as the best combination of spatial data discretization method, break number of spatial strata, and spatial scale parameter. In the study, the OPGD model is applied in three example cases with different types of spatial data, including spatial raster data, spatial point or areal statistical data, and spatial line segment data, and an R "GD" package is developed for computation. Results show that the parameter optimization process can further extract geographical characteristics and information contained in spatial explanatory variables in the geographical detector model. The improved model can be flexibly applied in both global and regional spatial analysis for various types of spatial data. Thus, the OPGD model can improve the overall capacity of spatial stratified heterogeneity analysis. The OPGD model and its diverse solutions can contribute to more accurate, flexible, and efficient spatial heterogeneity analysis, such as spatial patterns investigation and spatial factor explorations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助大胆盼兰采纳,获得10
刚刚
1秒前
1秒前
陈某某完成签到,获得积分10
1秒前
卡皮巴丘完成签到 ,获得积分10
2秒前
周少完成签到,获得积分10
2秒前
陶一二完成签到,获得积分10
4秒前
4秒前
4秒前
DocZhao完成签到 ,获得积分10
5秒前
apt完成签到,获得积分10
5秒前
5秒前
Three完成签到,获得积分10
6秒前
如果多年后完成签到 ,获得积分10
6秒前
SYLH应助solobang采纳,获得10
7秒前
SYLH应助solobang采纳,获得10
7秒前
灰色与青完成签到,获得积分10
7秒前
852应助幸福胡萝卜采纳,获得10
7秒前
虞无声应助年华采纳,获得10
7秒前
8秒前
香菜发布了新的文献求助10
9秒前
hf发布了新的文献求助10
9秒前
11秒前
爱听歌长颈鹿完成签到,获得积分20
11秒前
852应助抓恐龙采纳,获得10
11秒前
12秒前
小小鱼完成签到,获得积分10
12秒前
12秒前
单薄的小鸽子完成签到,获得积分10
13秒前
14秒前
charon完成签到,获得积分20
14秒前
bkagyin应助fff采纳,获得10
14秒前
小宇发布了新的文献求助10
15秒前
15秒前
1111发布了新的文献求助10
15秒前
单薄凌蝶完成签到,获得积分10
16秒前
16秒前
哄哄完成签到,获得积分10
16秒前
求知若渴完成签到,获得积分10
16秒前
ysf完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678