An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: cases with different types of spatial data

空间分析 空间异质性 地理信息系统 地理 统计 地图学 遥感 数学 生态学 生物
作者
Yongze Song,Jinfeng Wang,Yong Ge,Chengdong Xu
出处
期刊:Giscience & Remote Sensing [Informa]
卷期号:57 (5): 593-610 被引量:548
标识
DOI:10.1080/15481603.2020.1760434
摘要

Spatial heterogeneity represents a general characteristic of the inequitable distributions of spatial issues. The spatial stratified heterogeneity analysis investigates the heterogeneity among various strata of explanatory variables by comparing the spatial variance within strata and that between strata. The geographical detector model is a widely used technique for spatial stratified heterogeneity analysis. In the model, the spatial data discretization and spatial scale effects are fundamental issues, but they are generally determined by experience and lack accurate quantitative assessment in previous studies. To address this issue, an optimal parameters-based geographical detector (OPGD) model is developed for more accurate spatial analysis. The optimal parameters are explored as the best combination of spatial data discretization method, break number of spatial strata, and spatial scale parameter. In the study, the OPGD model is applied in three example cases with different types of spatial data, including spatial raster data, spatial point or areal statistical data, and spatial line segment data, and an R "GD" package is developed for computation. Results show that the parameter optimization process can further extract geographical characteristics and information contained in spatial explanatory variables in the geographical detector model. The improved model can be flexibly applied in both global and regional spatial analysis for various types of spatial data. Thus, the OPGD model can improve the overall capacity of spatial stratified heterogeneity analysis. The OPGD model and its diverse solutions can contribute to more accurate, flexible, and efficient spatial heterogeneity analysis, such as spatial patterns investigation and spatial factor explorations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十点熄灯发布了新的文献求助10
2秒前
高高的天亦完成签到 ,获得积分10
2秒前
第七个太阳完成签到,获得积分10
2秒前
HEIKU应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
3秒前
HEIKU应助科研通管家采纳,获得10
3秒前
HEIKU应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
妮妮完成签到,获得积分10
3秒前
善学以致用应助飞兰采纳,获得10
7秒前
怕孤单的听寒完成签到,获得积分10
7秒前
wjw完成签到,获得积分10
8秒前
jor666完成签到,获得积分10
9秒前
9秒前
玫瑰遇上奶油完成签到,获得积分10
10秒前
丘比特应助黙宇循光采纳,获得10
11秒前
12秒前
13秒前
RUIT完成签到,获得积分10
14秒前
15秒前
16秒前
19秒前
RUIT发布了新的文献求助10
19秒前
19秒前
俭朴的乐巧完成签到 ,获得积分10
20秒前
调皮的如凡完成签到,获得积分10
20秒前
在我梦里绕完成签到,获得积分10
20秒前
20秒前
飞兰发布了新的文献求助10
20秒前
研友_nV2ROn完成签到,获得积分10
21秒前
21秒前
铠甲勇士发布了新的文献求助30
21秒前
想发sci完成签到,获得积分10
21秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139963
求助须知:如何正确求助?哪些是违规求助? 2790850
关于积分的说明 7796798
捐赠科研通 2447191
什么是DOI,文献DOI怎么找? 1301745
科研通“疑难数据库(出版商)”最低求助积分说明 626313
版权声明 601194