Electronic Band Structure of Group IV 2D Materials: Graphene, Silicene, Germanene, Stanene using Tight Binding Approach

电子能带结构 单层 凝聚态物理 密度泛函理论 电子结构
作者
Md. Habibur Rahman,Shailee Mitra,Didarul Ahasan Redwan
标识
DOI:10.1109/icaict51780.2020.9333480
摘要

2D nanomaterials such as graphene, silicene, germanene and stanene are considered as one of the emerging research materials for transistor scaling. These materials have potential application in electronic, semiconductor and optoelectronic devices. In this present investigation, we have used the nearest neighbor tight-binding approach (NNTB) to explore the electronic band structure of these analogous 2D nanomaterials. It has been found that a 1.91 eV, 0.79eV, 0.S0eV and 0.60 eV bandgap can be successfully extracted from 4AGNR, 4ASiNR, 4AGeNR and 4ASnNR respectively. The extracted bandgap from 25AGNR, 25SiNR, 25GeNR and 25SnNR is calculated as 0.35 eV, 0.15eV, 0.15eV and 0.11 eV respectively. We have confirmed that for useful application of these nanomaterials in the semiconductor device, we have to keep the dimension of the nanodevices as small as possible. Besides, it has been found that at lower scale these nanomaterials exhibit direct bandgap which is useful for optoelectronic devices. We have demonstrated that as the width of nanoribbon increases that is device size, the possibility for extracting suitable bandgap for semiconductor devices reduces. Our computational approach suggests that as the ribbon width increases these nanomaterials behave like a conductor. Variation of extracted bandgap as a function of the device is also depicted. Our simulation results also suggest that extracted bandgap can be classified into three families of category. 3p and 3p+1 are suitable for semiconducting application whereas 3p+2 family is suitable for the semi-metallic application. These results may help to design and scale graphene, silicene, germanene and stanene based semiconductor devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mix多咯应助橘子采纳,获得10
刚刚
刚刚
酒酒完成签到 ,获得积分10
1秒前
徐昊雯完成签到 ,获得积分10
1秒前
1秒前
Dy完成签到,获得积分10
2秒前
Timessian发布了新的文献求助10
2秒前
2秒前
青梅绿茶完成签到,获得积分10
2秒前
2秒前
zzy关闭了zzy文献求助
2秒前
2秒前
科研通AI6应助自觉笑旋采纳,获得10
2秒前
Li完成签到,获得积分10
2秒前
3秒前
3秒前
RGalioncyer发布了新的文献求助10
3秒前
124完成签到,获得积分10
3秒前
3秒前
壳聚糖完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
小萝卜莉发布了新的文献求助10
4秒前
林摆摆完成签到,获得积分10
4秒前
4秒前
4秒前
月涵完成签到 ,获得积分10
5秒前
5秒前
Dy发布了新的文献求助10
5秒前
wrx完成签到,获得积分10
5秒前
雨柏完成签到 ,获得积分10
5秒前
徐昊雯发布了新的文献求助10
5秒前
zkz发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
wrx发布了新的文献求助10
6秒前
虎虎完成签到,获得积分20
7秒前
周周发布了新的文献求助10
7秒前
刘德新完成签到,获得积分20
7秒前
lili完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612993
求助须知:如何正确求助?哪些是违规求助? 4698217
关于积分的说明 14896593
捐赠科研通 4734695
什么是DOI,文献DOI怎么找? 2546766
邀请新用户注册赠送积分活动 1510830
关于科研通互助平台的介绍 1473494