清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Association Between Preoperative Mental Health and Clinically Meaningful Outcomes After Osteochondral Allograft for Cartilage Defects of the Knee: A Machine Learning Analysis

医学 软骨 最小临床重要差异 透明软骨 膝关节软骨 物理疗法 膝关节 外科 骨关节炎 关节软骨 病理 随机对照试验 解剖 替代医学
作者
Prem N. Ramkumar,Jaret M. Karnuta,Heather S. Haeberle,Kwadwo Owusu‐Akyaw,Tyler Warner,Scott A. Rodeo,Benedict U. Nwachukwu,Riley J. Williams
出处
期刊:American Journal of Sports Medicine [SAGE Publishing]
卷期号:49 (4): 948-957 被引量:25
标识
DOI:10.1177/0363546520988021
摘要

Background: Fresh osteochondral allograft transplantation (OCA) is an effective method of treating symptomatic cartilage defects of the knee. This cartilage restoration technique involves the single-stage implantation of viable, mature hyaline cartilage into the chondral or osteochondral lesion. Predictive models for reaching the clinically meaningful outcome among patients undergoing OCA for cartilage lesions of the knee remain under investigation. Purpose: To apply machine learning to determine which preoperative variables are predictive for achieving the minimal clinically important difference (MCID) and substantial clinical benefit (SCB) at 1 and 2 years after OCA for cartilage lesions of the knee. Study Design: Case-control study; Level of evidence, 3. Methods: Data were analyzed for patients who underwent OCA of the knee by 2 high-volume fellowship-trained cartilage surgeons before May 1, 2018. The International Knee Documentation Committee questionnaire (IKDC), Knee Outcome Survey–Activities of Daily Living (KOS-ADL), and Mental Component (MCS) and Physical Component (PCS) Summaries of the 36-Item Short Form Health Survey (SF-36) were administered preoperatively and at 1 and 2 years postoperatively. A total of 84 predictive models were created using 7 unique architectures to detect achievement of the MCID for each of the 4 outcome measures and the SCB for the IKDC and KOS-ADL at both time points. Data inputted into the models included previous and concomitant surgical history, laterality, sex, age, body mass index (BMI), intraoperative findings, and patient-reported outcome measures (PROMs). Shapley Additive Explanations (SHAP) analysis identified predictors of reaching the MCID and SCB. Results: Of the 185 patients who underwent OCA for the knee and met eligibility criteria from an institutional cartilage registry, 135 (73%) patients were available for the 1-year follow-up and 153 (83%) patients for the 2-year follow-up. In predicting outcomes after OCA in terms of the IKDC, KOS-ADL, MCS, and PCS at 1 and 2 years, areas under the receiver operating characteristic curve (AUCs) of the top-performing models ranged from fair (0.72) to excellent (0.94). Lower baseline mental health (MCS), higher baseline physical health (PCS) and knee function scores (KOS-ADL, IKDC Subjective), lower baseline activity demand (Marx, Cincinnati sports), worse pain symptoms (Cincinnati pain, SF-36 pain), and higher BMI were thematic predictors contributing to failure to achieve the MCID or SCB at 1 and 2 years postoperatively. Conclusion: Our machine learning models were effective in predicting outcomes and elucidating the relationships between baseline factors contributing to achieving the MCID for OCA of the knee. Patients who preoperatively report poor mental health, catastrophize pain symptoms, compensate with higher physical health and knee function, and exhibit lower activity demands are at risk for failing to reach clinically meaningful outcomes after OCA of the knee.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
小宝完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
小芭乐完成签到 ,获得积分10
11秒前
changfox完成签到,获得积分10
14秒前
tcy完成签到,获得积分10
21秒前
Lychee完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
30秒前
Akim应助科研通管家采纳,获得10
32秒前
37秒前
yellowonion完成签到 ,获得积分10
38秒前
xianyaoz完成签到 ,获得积分10
38秒前
恒牙完成签到 ,获得积分10
44秒前
量子星尘发布了新的文献求助200
44秒前
量子星尘发布了新的文献求助50
1分钟前
诸觅双完成签到 ,获得积分10
1分钟前
顺利完成签到,获得积分10
1分钟前
时舒完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
海边听海完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
阿桂完成签到 ,获得积分10
1分钟前
yuehan完成签到 ,获得积分10
1分钟前
甜甜灵槐完成签到 ,获得积分10
1分钟前
gobi完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
sy应助一个小胖子采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
一个小胖子完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
科研狗完成签到 ,获得积分0
2分钟前
默默的筝完成签到 ,获得积分10
2分钟前
hzhz完成签到,获得积分10
2分钟前
孙老师完成签到 ,获得积分10
2分钟前
南风完成签到 ,获得积分10
2分钟前
勤恳的书文完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
典雅葶完成签到 ,获得积分10
2分钟前
绿色心情完成签到 ,获得积分10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661095
求助须知:如何正确求助?哪些是违规求助? 3222235
关于积分的说明 9744117
捐赠科研通 2931862
什么是DOI,文献DOI怎么找? 1605234
邀请新用户注册赠送积分活动 757798
科研通“疑难数据库(出版商)”最低求助积分说明 734569