亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An interpretable framework of data-driven turbulence modeling using deep neural networks

物理 湍流 人工神经网络 统计物理学 人工智能 气象学 计算机科学
作者
Chao Jiang,Ricardo Vinuesa,Ruilin Chen,Junyi Mi,Shujin Laima,Hui Li
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:33 (5) 被引量:18
标识
DOI:10.1063/5.0048909
摘要

Despite a cost-effective option in practical engineering, Reynolds-averaged Navier-Stokes simulations are facing the ever-growing demand for more accurate turbulence models. Recently, emerging machine learning techniques are making promising impact in turbulence modeling, but in their infancy for widespread industrial adoption. Towards this end, this work proposes a universal, inherently interpretable machine learning framework of turbulence modeling, which mainly consists of two parallel machine-learning-based modules to respectively infer the integrity basis and closure coefficients. At every phase of the model development, both data representing the evolution dynamics of turbulence and domain-knowledge representing prior physical considerations are properly fed and reasonably converted into modeling knowledge. Thus, the developed model is both data- and knowledge-driven. Specifically, a version with pre-constrained integrity basis is provided to demonstrate detailedly how to integrate domain-knowledge, how to design a fair and robust training strategy, and how to evaluate the data-driven model. Plain neural network and residual neural network as the building blocks in each module are compared. Emphases are made on three-fold: (i) a compact input feature parameterizing the newly-proposed turbulent timescale is introduced to release nonunique mappings between conventional input arguments and output Reynolds stress; (ii) the realizability limiter is developed to overcome under-constraint of modeled stress; and (iii) constraints of fairness and noisy-sensitivity are first included in the training procedure. In such endeavors, an invariant, realizable, unbiased and robust data-driven turbulence model is achieved, and does gain good generalization across channel flows at different Reynolds numbers and duct flows with various aspect ratios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助就_爱_呀采纳,获得10
1秒前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Oracle应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
科研通AI5应助橙子采纳,获得10
1分钟前
1分钟前
1分钟前
橙子发布了新的文献求助10
1分钟前
2分钟前
神勇朝雪完成签到,获得积分10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
乐正怡完成签到 ,获得积分0
3分钟前
4分钟前
就_爱_呀发布了新的文献求助10
4分钟前
小蚂蚁完成签到 ,获得积分10
4分钟前
JamesPei应助龙卡烧烤店采纳,获得10
4分钟前
4分钟前
就_爱_呀发布了新的文献求助10
5分钟前
胜胜糖完成签到 ,获得积分10
5分钟前
5分钟前
MchemG应助科研通管家采纳,获得10
5分钟前
小蘑菇应助科研通管家采纳,获得10
5分钟前
MchemG应助科研通管家采纳,获得10
5分钟前
花园里的蒜完成签到 ,获得积分0
5分钟前
bellapp完成签到 ,获得积分10
5分钟前
sailingluwl完成签到,获得积分10
5分钟前
danielbest1234完成签到,获得积分10
5分钟前
黑神话001完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
6分钟前
科研通AI5应助橙子采纳,获得10
6分钟前
Magali发布了新的文献求助10
6分钟前
6分钟前
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674431
求助须知:如何正确求助?哪些是违规求助? 3229731
关于积分的说明 9786993
捐赠科研通 2940242
什么是DOI,文献DOI怎么找? 1611830
邀请新用户注册赠送积分活动 761043
科研通“疑难数据库(出版商)”最低求助积分说明 736427