Mitochondria and Calcium in Alzheimer’s Disease: From Cell Signaling to Neuronal Cell Death

线粒体 细胞生物学 生物 疾病 背景(考古学) 神经退行性变 DNAJA3公司 程序性细胞死亡 神经科学 活性氧 线粒体融合 钙信号传导 细胞凋亡 信号转导 医学 线粒体DNA 病理 生物化学 基因 古生物学
作者
Maria Calvo-Rodríguez,Brian J. Bacskai
出处
期刊:Trends in Neurosciences [Elsevier]
卷期号:44 (2): 136-151 被引量:153
标识
DOI:10.1016/j.tins.2020.10.004
摘要

Ca2+ levels are tightly regulated in mitochondria. If excessive Ca2+ levels are reached within mitochondria, then key mitochondrial functions are impaired, leading to enhanced generation of reactive oxygen species and activation of apoptosis, processes that take place in AD. The combination of different technologies, such as RNA-seq, targeted fluorescent probes, multiphoton microscopy, and transgenic mouse models of AD, has made it possible to understand the underlying mechanisms of mitochondrial Ca2+ dysregulation and its contribution to a more general Ca2+ impairment in AD. Aβ causes cytosolic and mitochondrial Ca2+ overload both in vitro and in vivo. Misfolded and hyperphosphorylated tau protein also disrupts Ca2+ homeostasis in mitochondria. Identifying targets to maintain mitochondrial Ca2+ homeostasis and correct mitochondrial function, particularly mitochondrial Ca2+ transporters, could offer promising venues for the development of drugs against AD. Mitochondrial dysfunction has been implicated in the pathogenesis of almost all neurological diseases, including Alzheimer’s disease (AD). Historically, a primary focus in this context has been the link between mitochondrial dynamics and amyloid β toxicity. Recent evidence suggests that dysregulation of mitochondrial calcium homeostasis is also related to tau and other risk factors in AD, although an ongoing challenge in the field is that data collected from different models or experimental settings have not always been consistent. We examine recent literature on mitochondrial dysregulation in AD, with special emphasis on mitochondrial calcium. We include data from in vitro systems, genetic animal models, and AD-derived human tissue, and discuss whether mitochondrial calcium transporters should be proposed as therapeutic candidates for the development of neuroprotective drugs against AD. Mitochondrial dysfunction has been implicated in the pathogenesis of almost all neurological diseases, including Alzheimer’s disease (AD). Historically, a primary focus in this context has been the link between mitochondrial dynamics and amyloid β toxicity. Recent evidence suggests that dysregulation of mitochondrial calcium homeostasis is also related to tau and other risk factors in AD, although an ongoing challenge in the field is that data collected from different models or experimental settings have not always been consistent. We examine recent literature on mitochondrial dysregulation in AD, with special emphasis on mitochondrial calcium. We include data from in vitro systems, genetic animal models, and AD-derived human tissue, and discuss whether mitochondrial calcium transporters should be proposed as therapeutic candidates for the development of neuroprotective drugs against AD. a peptide of 38–43 amino acids that is the main component of amyloid plaques. Aβ1–42 is more hydrophobic and prone to aggregation, and is the most predominant peptide in amyloid plaques. It has been proposed that soluble Aβ oligomers (Aβo), rather than amyloid plaques, are the most neurotoxic species of Aβ. subcellular regions of localized high Ca2+ concentration that are key elements of Ca2+ signaling, particularly in neurons and cardiac cells. They are formed at sites where Ca2+ enters the cytoplasm through Ca2+ channels either in the plasma membrane or in internal stores such that, when the channel opens, Ca2+ concentration increases up to several hundred micromolar. They can be visualized using fluorescence/bioluminescence reporters such as aequorins. AD caused by mutations in the genes encoding amyloid precursor protein (APP), presenilin 1 (PSEN1), or presenilin 2 (PSEN2). These mutations are extremely rare (<1% of people with AD carry one of these mutations), and result in early-onset symptoms of disease (in people as young as 45 years of age). the most common form of AD. It is detectable in people aged 65 years and older. Little is known about the cause of the onset of sAD, but is likely a combination of genetic risk factors, diet, and environment. the main mitochondrial pathway for Ca2+ uptake. It constitutes a macromolecular complex of proteins (named the mitochondrial calcium uniporter complex), including the pore and several regulatory subunits. The MCU defines the pore domain of the complex. the gatekeepers of MCU. MICU1 and MICU2 are Ca2+ sensors (given their two Ca2+-binding EF-hand motifs). The combination of the two regulates the MCU complex to prevent Ca2+ overload at low extramitochondrial Ca2+ concentrations. MICU3, mainly expressed in the CNS, enhances mitochondrial Ca2+ uptake in neurons. the driving force for cytosolic Ca2+ to accumulate in the mitochondrial matrix via the MCU. It is generated by proton pumps in the electronic transport chain and is negative inside mitochondria. a megachannel that allows the efflux of metabolites with a molecular weight of up to 1.5 kDa from the mitochondrial matrix. It is activated by multiple effectors, especially Ca2+ in the presence of phosphate and reactive oxygen species (ROS). The mPTP is mainly formed by ATP synthase and is regulated by cyclophilin D (CypD). Its inhibition by cyclosporine A (CsA) leads to closure of the pore. the major pathway for Ca2+ efflux from the mitochondrial matrix. Ca2+ extrusion is coupled to Na+ influx from the cytosol into the mitochondrial matrix; however, Na+ can be effectively replaced by Li+ (and hence its name). an integral membrane protein located in the endoplasmic reticulum (ER). In the brain, neurons mainly contain PSEN1 and PSEN2. They participate in Aβ generation as catalytic enzymes within the γ-secretase complex. a protein contained within the axons of nerve cells that promotes the assembly and stabilization of microtubules, the main components of the cytoskeleton and key players in the transport of vesicles, organelles, and proteins. Hyperphosphorylation of tau results in misfolding and the formation of neurofibrillary tangles. the most abundant channel in the outer mitochondrial membrane (OMM) that provides an aqueous pathway from the cytosol and across the OMM. It allows the entry of substrates for mitochondria to produce ATP, such as pyruvate, succinate, and NADH, as well as Ca2+, Na+, and K+.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LZ完成签到,获得积分10
1秒前
GG完成签到 ,获得积分10
1秒前
Who完成签到,获得积分10
1秒前
2秒前
3秒前
研友_8QxN1Z发布了新的文献求助10
4秒前
xsq发布了新的文献求助10
5秒前
QXS发布了新的文献求助10
6秒前
橘子汽水完成签到 ,获得积分10
6秒前
6秒前
9秒前
9秒前
12秒前
12秒前
飘渺的尘埃完成签到,获得积分10
13秒前
xsq完成签到,获得积分10
14秒前
16秒前
燊yy发布了新的文献求助10
17秒前
17秒前
黎书禾发布了新的文献求助10
17秒前
17秒前
18秒前
思源应助反方向的钟采纳,获得10
19秒前
大碗完成签到 ,获得积分10
21秒前
林仰发布了新的文献求助10
22秒前
Xiaoping发布了新的文献求助10
22秒前
fanyuhong完成签到 ,获得积分10
23秒前
23秒前
24秒前
落后芹菜完成签到,获得积分10
25秒前
26秒前
magic发布了新的文献求助10
28秒前
zzzkyt发布了新的文献求助10
29秒前
凊嗏淡墨发布了新的文献求助10
29秒前
29秒前
万能图书馆应助myl采纳,获得10
30秒前
31秒前
李健应助libobo采纳,获得10
33秒前
QXS发布了新的文献求助10
34秒前
李思发布了新的文献求助50
35秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3293276
求助须知:如何正确求助?哪些是违规求助? 2929410
关于积分的说明 8441615
捐赠科研通 2601546
什么是DOI,文献DOI怎么找? 1419967
科研通“疑难数据库(出版商)”最低求助积分说明 660479
邀请新用户注册赠送积分活动 643063