Predicting PTSD severity using longitudinal magnetoencephalography with a multi-step learning framework

随机森林 脑磁图 特征选择 支持向量机 计算机科学 人工智能 特征(语言学) 机器学习 回归 模式识别(心理学) 心理学 统计 数学 脑电图 神经科学 哲学 语言学
作者
Jing Zhang,Simeon M. Wong,J. Don Richardson,Rakesh Jetly,Benjamin T. Dunkley
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:17 (6): 066013-066013 被引量:8
标识
DOI:10.1088/1741-2552/abc8d6
摘要

Objective. The present study explores the effectiveness of incorporating temporal information in predicting post-traumatic stress disorder (PTSD) severity using magnetoencephalography (MEG) imaging data. The main objective was to assess the relationship between longitudinal MEG functional connectome data, measured across a variety of neural oscillatory frequencies and collected at two timepoints (Phase I and II), against PTSD severity captured at the later time point.Approach. We used an in-house developed informatics solution, featuring a two-step process featuring pre-learn feature selection (CV-SVR-rRF-FS, cross-validation with support vector regression (SVR) and recursive random forest feature selection) and deep learning (long-short term memory recurrent neural network, LSTM-RNN) techniques.Main results. The pre-learn step selected a small number of functional connections (or edges) from Phase I MEG data associated with Phase II PTSD severity, indexed using the PTSD CheckList (PCL) score. This strategy identified the functional edges affected by traumatic exposure and indexed disease severity, either permanently or evolving dynamically over time, for optimal predictive performance. Using the selected functional edges, LSTM modelling was used to incorporate the Phase II MEG data into longitudinal regression models. Single timepoint (Phase I and Phase II MEG data) SVR models were generated for comparison. Assessed with holdout test data, alpha and high gamma bands showed enhanced predictive performance with the longitudinal models comparing to the Phase I single timepoint models. The best predictive performance was observed for lower frequency ranges compared to the higher frequencies (low gamma), for both model types.Significance. This study identified the neural oscillatory signatures that benefited from additional temporal information when estimating the outcome of PTSD severity using MEG functional connectome data. Crucially, this approach can similarly be applied to any other mental health challenge, using this effective informatics foundation for longitudinal tracking of pathological brain states and predicting outcome with a MEG-based neurophysiology imaging system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默读发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
妮妮爱smile完成签到,获得积分10
3秒前
今后应助静汉采纳,获得10
4秒前
lrx完成签到,获得积分20
4秒前
科研通AI5应助tina采纳,获得10
7秒前
8秒前
8秒前
你在教我做事啊完成签到 ,获得积分10
10秒前
wen发布了新的文献求助50
11秒前
12秒前
13秒前
小二郎应助琳琳采纳,获得10
13秒前
犹豫的若发布了新的文献求助10
14秒前
123发布了新的文献求助10
14秒前
梅梅超勇敢完成签到 ,获得积分10
16秒前
Jiatu_Li完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
科研通AI5应助见青山采纳,获得10
19秒前
ding应助随机采纳,获得10
19秒前
CLAIR发布了新的文献求助10
19秒前
Eve完成签到 ,获得积分10
20秒前
JJ发布了新的文献求助10
20秒前
FashionBoy应助累鼠的牛马采纳,获得10
22秒前
情怀应助123采纳,获得10
23秒前
ding发布了新的文献求助10
23秒前
24秒前
26秒前
CLAIR完成签到,获得积分10
26秒前
27秒前
现代的十八完成签到,获得积分10
27秒前
27秒前
所所应助weirb采纳,获得30
29秒前
sin完成签到,获得积分20
29秒前
丘比特应助张弘采纳,获得10
30秒前
1911123434发布了新的文献求助10
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741086
求助须知:如何正确求助?哪些是违规求助? 3283852
关于积分的说明 10037232
捐赠科研通 3000684
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783858
科研通“疑难数据库(出版商)”最低求助积分说明 750442