A hybrid deep learning model for short-term PV power forecasting

深度学习 计算机科学 人工智能 感知器 加权 电力系统 人工神经网络 循环神经网络 机器学习 功率(物理) 量子力学 医学 物理 放射科
作者
Pengtao Li,Kaile Zhou,Xinhui Lu,Shanlin Yang
出处
期刊:Applied Energy [Elsevier]
卷期号:259: 114216-114216 被引量:332
标识
DOI:10.1016/j.apenergy.2019.114216
摘要

The integration of PV power brings great economic and environmental benefits. However, the high penetration of PV power may challenge the planning and operation of the existing power system owing to the intermittence and randomicity of PV power generation. Achieving accurate forecasting for PV power generation is important for providing high quality electric energy for end-consumers and for enhancing the reliability of power system operation. Motivated by recent advancements in deep learning methods and their satisfactory performance in the energy sector, a hybrid deep learning model combining wavelet packet decomposition (WPD) and long short-term memory (LSTM) networks is proposed in this study. The hybrid deep learning model is utilized for one-hour-ahead PV power forecasting with five-minute intervals. WPD is first used to decompose the original PV power series into sub-series. Next, four independent LSTM networks are developed for these sub-series. Finally, the results predicted by each LSTM network are reconstructed and a linear weighting method is employed to obtain the final forecasting results. The performance of the proposed method is demonstrated with a case study using an actual dataset collected from Alice Springs, Australia. Comparisons with individual LSTM, recurrent neural network (RNN), gated recurrent (GRU), and multi-layer perceptron (MLP) models are also presented. The values of three performance evaluation indicators, MBE, MAPE, and RMSE, show that the proposed hybrid deep learning model exhibits superior performance in both forecasting accuracy and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Light完成签到,获得积分10
刚刚
一一应助科研通管家采纳,获得10
刚刚
一一应助科研通管家采纳,获得10
刚刚
membrane应助科研通管家采纳,获得10
1秒前
杳鸢应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
1秒前
可爱的函函应助Aprilapple采纳,获得10
1秒前
1秒前
一一应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
membrane应助科研通管家采纳,获得10
1秒前
2秒前
Enckson完成签到,获得积分10
2秒前
Light发布了新的文献求助10
3秒前
3秒前
khaosyi完成签到 ,获得积分10
4秒前
6秒前
6秒前
荷包蛋发布了新的文献求助10
6秒前
司马飞飞发布了新的文献求助10
6秒前
6秒前
纯情的代曼完成签到,获得积分10
8秒前
9秒前
李月月发布了新的文献求助10
10秒前
科目三应助肖sir666采纳,获得10
11秒前
jianwu47发布了新的文献求助10
13秒前
司马飞飞完成签到,获得积分10
14秒前
诗555完成签到 ,获得积分10
16秒前
优美君浩发布了新的文献求助10
19秒前
20秒前
20秒前
目土土发布了新的文献求助10
22秒前
蘇尼Ai发布了新的文献求助10
24秒前
chennangua发布了新的文献求助30
26秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3258178
求助须知:如何正确求助?哪些是违规求助? 2899953
关于积分的说明 8308396
捐赠科研通 2569183
什么是DOI,文献DOI怎么找? 1395555
科研通“疑难数据库(出版商)”最低求助积分说明 653117
邀请新用户注册赠送积分活动 631027