A hybrid deep learning model for short-term PV power forecasting

深度学习 计算机科学 人工智能 感知器 加权 电力系统 人工神经网络 循环神经网络 机器学习 功率(物理) 量子力学 医学 物理 放射科
作者
Pengtao Li,Kaile Zhou,Xinhui Lu,Shanlin Yang
出处
期刊:Applied Energy [Elsevier BV]
卷期号:259: 114216-114216 被引量:332
标识
DOI:10.1016/j.apenergy.2019.114216
摘要

The integration of PV power brings great economic and environmental benefits. However, the high penetration of PV power may challenge the planning and operation of the existing power system owing to the intermittence and randomicity of PV power generation. Achieving accurate forecasting for PV power generation is important for providing high quality electric energy for end-consumers and for enhancing the reliability of power system operation. Motivated by recent advancements in deep learning methods and their satisfactory performance in the energy sector, a hybrid deep learning model combining wavelet packet decomposition (WPD) and long short-term memory (LSTM) networks is proposed in this study. The hybrid deep learning model is utilized for one-hour-ahead PV power forecasting with five-minute intervals. WPD is first used to decompose the original PV power series into sub-series. Next, four independent LSTM networks are developed for these sub-series. Finally, the results predicted by each LSTM network are reconstructed and a linear weighting method is employed to obtain the final forecasting results. The performance of the proposed method is demonstrated with a case study using an actual dataset collected from Alice Springs, Australia. Comparisons with individual LSTM, recurrent neural network (RNN), gated recurrent (GRU), and multi-layer perceptron (MLP) models are also presented. The values of three performance evaluation indicators, MBE, MAPE, and RMSE, show that the proposed hybrid deep learning model exhibits superior performance in both forecasting accuracy and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏墨发布了新的文献求助30
刚刚
李健的小迷弟应助xx采纳,获得10
刚刚
小熊完成签到,获得积分10
1秒前
高兴荔枝发布了新的文献求助10
1秒前
清欢完成签到,获得积分10
2秒前
皮崇知发布了新的文献求助10
4秒前
慕青应助小星星采纳,获得50
8秒前
9秒前
eric888应助科研通管家采纳,获得100
9秒前
yydragen应助科研通管家采纳,获得80
9秒前
SciGPT应助科研通管家采纳,获得30
10秒前
所所应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得30
10秒前
852应助科研通管家采纳,获得10
10秒前
64658应助科研通管家采纳,获得10
10秒前
iNk应助科研通管家采纳,获得20
10秒前
64658应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
10秒前
64658应助科研通管家采纳,获得10
10秒前
64658应助科研通管家采纳,获得10
11秒前
无花果应助科研通管家采纳,获得10
11秒前
64658应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
64658应助科研通管家采纳,获得10
11秒前
柯一一应助科研通管家采纳,获得10
11秒前
11秒前
64658应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
专注的绾绾完成签到 ,获得积分10
14秒前
ʚᵗᑋᵃᐢᵏ ᵞᵒᵘɞ完成签到,获得积分10
16秒前
taipingyang完成签到,获得积分10
16秒前
hull发布了新的文献求助10
17秒前
12138的9527发布了新的文献求助10
19秒前
共享精神应助xiao双月采纳,获得10
20秒前
momo完成签到,获得积分10
21秒前
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967367
求助须知:如何正确求助?哪些是违规求助? 3512602
关于积分的说明 11164375
捐赠科研通 3247533
什么是DOI,文献DOI怎么找? 1793886
邀请新用户注册赠送积分活动 874741
科研通“疑难数据库(出版商)”最低求助积分说明 804498