First-principle calculations of the effects of intrinsic defects in bilayer graphene as a positive electrode material for aluminum-ion batteries

材料科学 石墨烯 双层石墨烯 电池(电) 密度泛函理论 双层 空位缺陷 电极 离子 热扩散率 纳米技术 插层(化学) 化学物理 无机化学 凝聚态物理 计算化学 物理化学 热力学 功率(物理) 物理 化学 生物 量子力学 遗传学
作者
Faizatul Azwa Zamri,Muhammad Husaini
出处
期刊:Materials today communications [Elsevier BV]
卷期号:25: 101641-101641 被引量:12
标识
DOI:10.1016/j.mtcomm.2020.101641
摘要

Rechargeable aluminum-ion batteries draw attention in the energy storage system because of their massive gravimetric and volumetric capacities at low cost due to high abundance of raw materials. However, the suitability of positive electrode materials remains a challenge in battery development. Bilayer graphene has unique characteristics and is expected to be a good candidate for electrodes based on the lithium- and sodium-ion batteries. Furthermore, the presence of defects in graphene enhances the interaction between ion and graphene layers. We used density functional theory calculations to investigate the effects of intrinsic defects on aluminum-ion battery performance. The binding energy and interlayer distance for the pristine, defective bilayer graphene after AlCl4 intercalation ranged from −1.74 to −2.30 eV and 8.847–8.877 Å, respectively. We found that a high concentration of the vacancy carbon in the graphene layer will improve the working voltage of the battery meanwhile existing of the Stone Wales defect caused lacking in battery properties. AlCl4 intercalated in the pristine and defective bilayer graphene exhibited metallic characteristics according to the density of states. The stone-wales defects in the bilayer graphene could enhance the energy charge transfer. However, the AlCl4 diffusivity rate in the divacant graphene was faster than that in pristine and stone wales bilayer graphene. The diffusivity rate calculated was 8.81 × 10−06, 8.07 × 10−06 and 1.03 × 10−05 cm2/s, accordingly. These theoretical investigations provide new insights into defect control in carbon materials to enhance aluminum-ion battery performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
99完成签到,获得积分10
1秒前
在水一方应助叮叮猫采纳,获得10
2秒前
上官若男应助tqqwerty采纳,获得10
2秒前
asd_1应助南国之霄采纳,获得10
4秒前
4秒前
4秒前
烟花应助椰子树采纳,获得10
6秒前
景觅波完成签到,获得积分10
7秒前
nenoaowu发布了新的文献求助10
7秒前
多久上课发布了新的文献求助10
7秒前
jenningseastera应助what采纳,获得30
8秒前
GeZhang完成签到,获得积分10
8秒前
9秒前
小明应助科研通管家采纳,获得10
9秒前
9秒前
orixero应助科研通管家采纳,获得10
9秒前
9秒前
思源应助科研通管家采纳,获得10
10秒前
飘逸的傲霜完成签到 ,获得积分10
10秒前
今后应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
ld发布了新的文献求助10
10秒前
10秒前
Orange应助科研通管家采纳,获得10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
一一发布了新的文献求助10
11秒前
浮游应助科研通管家采纳,获得30
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
11秒前
13秒前
小呆呆完成签到,获得积分10
13秒前
杨金蓉发布了新的文献求助20
14秒前
Owen应助hiker采纳,获得10
14秒前
15秒前
薛华倩发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4538576
求助须知:如何正确求助?哪些是违规求助? 3973016
关于积分的说明 12307581
捐赠科研通 3639826
什么是DOI,文献DOI怎么找? 2004103
邀请新用户注册赠送积分活动 1039548
科研通“疑难数据库(出版商)”最低求助积分说明 928849