First-principle calculations of the effects of intrinsic defects in bilayer graphene as a positive electrode material for aluminum-ion batteries

材料科学 石墨烯 双层石墨烯 电池(电) 密度泛函理论 双层 空位缺陷 电极 离子 热扩散率 纳米技术 插层(化学) 化学物理 无机化学 凝聚态物理 计算化学 物理化学 热力学 物理 功率(物理) 生物 化学 量子力学 遗传学
作者
Faizatul Azwa Zamri,Muhammad Husaini
出处
期刊:Materials today communications [Elsevier]
卷期号:25: 101641-101641 被引量:12
标识
DOI:10.1016/j.mtcomm.2020.101641
摘要

Rechargeable aluminum-ion batteries draw attention in the energy storage system because of their massive gravimetric and volumetric capacities at low cost due to high abundance of raw materials. However, the suitability of positive electrode materials remains a challenge in battery development. Bilayer graphene has unique characteristics and is expected to be a good candidate for electrodes based on the lithium- and sodium-ion batteries. Furthermore, the presence of defects in graphene enhances the interaction between ion and graphene layers. We used density functional theory calculations to investigate the effects of intrinsic defects on aluminum-ion battery performance. The binding energy and interlayer distance for the pristine, defective bilayer graphene after AlCl4 intercalation ranged from −1.74 to −2.30 eV and 8.847–8.877 Å, respectively. We found that a high concentration of the vacancy carbon in the graphene layer will improve the working voltage of the battery meanwhile existing of the Stone Wales defect caused lacking in battery properties. AlCl4 intercalated in the pristine and defective bilayer graphene exhibited metallic characteristics according to the density of states. The stone-wales defects in the bilayer graphene could enhance the energy charge transfer. However, the AlCl4 diffusivity rate in the divacant graphene was faster than that in pristine and stone wales bilayer graphene. The diffusivity rate calculated was 8.81 × 10−06, 8.07 × 10−06 and 1.03 × 10−05 cm2/s, accordingly. These theoretical investigations provide new insights into defect control in carbon materials to enhance aluminum-ion battery performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Somogyis发布了新的文献求助10
1秒前
lylyspeechless完成签到,获得积分10
2秒前
胡楠完成签到,获得积分10
3秒前
3秒前
3秒前
JY'完成签到,获得积分10
4秒前
黄黄完成签到,获得积分10
4秒前
现实的飞风完成签到,获得积分10
5秒前
Aipoi发布了新的文献求助10
8秒前
neu_zxy1991完成签到,获得积分10
8秒前
xiaoblue完成签到,获得积分10
11秒前
梅子完成签到 ,获得积分10
11秒前
Aipoi完成签到,获得积分10
12秒前
12秒前
Ccddxx完成签到,获得积分10
12秒前
666完成签到,获得积分10
13秒前
13秒前
14秒前
GankhuyagJavzan完成签到,获得积分10
14秒前
15秒前
Ava应助Lyd采纳,获得10
15秒前
15秒前
ll发布了新的文献求助10
15秒前
冷阳发布了新的文献求助20
16秒前
翧礼完成签到,获得积分10
17秒前
李海乐发布了新的文献求助10
17秒前
18秒前
SYX发布了新的文献求助10
20秒前
友好的牛排完成签到,获得积分0
21秒前
Dxy-TOFA完成签到,获得积分10
21秒前
energetic发布了新的文献求助10
22秒前
SYX完成签到,获得积分10
24秒前
wh完成签到,获得积分10
24秒前
Lucas应助flyabc采纳,获得10
25秒前
惔惔惔发布了新的文献求助10
25秒前
慎二完成签到 ,获得积分10
26秒前
简单的银耳汤完成签到,获得积分10
26秒前
28秒前
邵初蓝完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294370
求助须知:如何正确求助?哪些是违规求助? 4444225
关于积分的说明 13832582
捐赠科研通 4328291
什么是DOI,文献DOI怎么找? 2376049
邀请新用户注册赠送积分活动 1371380
关于科研通互助平台的介绍 1336554