亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

First-principle calculations of the effects of intrinsic defects in bilayer graphene as a positive electrode material for aluminum-ion batteries

材料科学 石墨烯 双层石墨烯 电池(电) 密度泛函理论 双层 空位缺陷 电极 离子 热扩散率 纳米技术 插层(化学) 化学物理 无机化学 凝聚态物理 计算化学 物理化学 热力学 功率(物理) 物理 化学 生物 量子力学 遗传学
作者
Faizatul Azwa Zamri,Muhammad Husaini
出处
期刊:Materials today communications [Elsevier]
卷期号:25: 101641-101641 被引量:12
标识
DOI:10.1016/j.mtcomm.2020.101641
摘要

Rechargeable aluminum-ion batteries draw attention in the energy storage system because of their massive gravimetric and volumetric capacities at low cost due to high abundance of raw materials. However, the suitability of positive electrode materials remains a challenge in battery development. Bilayer graphene has unique characteristics and is expected to be a good candidate for electrodes based on the lithium- and sodium-ion batteries. Furthermore, the presence of defects in graphene enhances the interaction between ion and graphene layers. We used density functional theory calculations to investigate the effects of intrinsic defects on aluminum-ion battery performance. The binding energy and interlayer distance for the pristine, defective bilayer graphene after AlCl4 intercalation ranged from −1.74 to −2.30 eV and 8.847–8.877 Å, respectively. We found that a high concentration of the vacancy carbon in the graphene layer will improve the working voltage of the battery meanwhile existing of the Stone Wales defect caused lacking in battery properties. AlCl4 intercalated in the pristine and defective bilayer graphene exhibited metallic characteristics according to the density of states. The stone-wales defects in the bilayer graphene could enhance the energy charge transfer. However, the AlCl4 diffusivity rate in the divacant graphene was faster than that in pristine and stone wales bilayer graphene. The diffusivity rate calculated was 8.81 × 10−06, 8.07 × 10−06 and 1.03 × 10−05 cm2/s, accordingly. These theoretical investigations provide new insights into defect control in carbon materials to enhance aluminum-ion battery performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云蓝完成签到 ,获得积分10
17秒前
oi完成签到 ,获得积分10
23秒前
yang完成签到 ,获得积分10
25秒前
777关闭了777文献求助
37秒前
Owen应助NEKO采纳,获得10
42秒前
li完成签到 ,获得积分10
1分钟前
美满尔蓝完成签到,获得积分10
1分钟前
zxxxxxz完成签到,获得积分10
1分钟前
1分钟前
zxxxxxz发布了新的文献求助10
1分钟前
ZSJ完成签到,获得积分20
1分钟前
1分钟前
yuxi2025完成签到 ,获得积分10
1分钟前
ZSJ发布了新的文献求助10
1分钟前
1分钟前
1分钟前
NEKO发布了新的文献求助10
1分钟前
lige完成签到 ,获得积分10
2分钟前
天天快乐应助光轮2000采纳,获得10
2分钟前
2分钟前
2分钟前
光轮2000发布了新的文献求助10
2分钟前
科目三应助满意的世界采纳,获得10
2分钟前
张杰列夫完成签到 ,获得积分10
2分钟前
小竖完成签到 ,获得积分10
2分钟前
啊姜姜姜姜姜完成签到 ,获得积分10
2分钟前
隐形曼青应助科研通管家采纳,获得10
3分钟前
ding应助科研通管家采纳,获得10
3分钟前
kouxinyao完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
zakaria发布了新的文献求助10
3分钟前
顾矜应助光轮2000采纳,获得10
3分钟前
3分钟前
3分钟前
光轮2000发布了新的文献求助10
3分钟前
111完成签到 ,获得积分20
3分钟前
Joceelyn完成签到,获得积分10
3分钟前
完美的海完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603285
求助须知:如何正确求助?哪些是违规求助? 4688360
关于积分的说明 14853356
捐赠科研通 4689089
什么是DOI,文献DOI怎么找? 2540594
邀请新用户注册赠送积分活动 1506982
关于科研通互助平台的介绍 1471594