First-principle calculations of the effects of intrinsic defects in bilayer graphene as a positive electrode material for aluminum-ion batteries

材料科学 石墨烯 双层石墨烯 电池(电) 密度泛函理论 双层 空位缺陷 电极 离子 热扩散率 纳米技术 插层(化学) 化学物理 无机化学 凝聚态物理 计算化学 物理化学 热力学 功率(物理) 物理 化学 生物 量子力学 遗传学
作者
Faizatul Azwa Zamri,Muhammad Husaini
出处
期刊:Materials today communications [Elsevier BV]
卷期号:25: 101641-101641 被引量:12
标识
DOI:10.1016/j.mtcomm.2020.101641
摘要

Rechargeable aluminum-ion batteries draw attention in the energy storage system because of their massive gravimetric and volumetric capacities at low cost due to high abundance of raw materials. However, the suitability of positive electrode materials remains a challenge in battery development. Bilayer graphene has unique characteristics and is expected to be a good candidate for electrodes based on the lithium- and sodium-ion batteries. Furthermore, the presence of defects in graphene enhances the interaction between ion and graphene layers. We used density functional theory calculations to investigate the effects of intrinsic defects on aluminum-ion battery performance. The binding energy and interlayer distance for the pristine, defective bilayer graphene after AlCl4 intercalation ranged from −1.74 to −2.30 eV and 8.847–8.877 Å, respectively. We found that a high concentration of the vacancy carbon in the graphene layer will improve the working voltage of the battery meanwhile existing of the Stone Wales defect caused lacking in battery properties. AlCl4 intercalated in the pristine and defective bilayer graphene exhibited metallic characteristics according to the density of states. The stone-wales defects in the bilayer graphene could enhance the energy charge transfer. However, the AlCl4 diffusivity rate in the divacant graphene was faster than that in pristine and stone wales bilayer graphene. The diffusivity rate calculated was 8.81 × 10−06, 8.07 × 10−06 and 1.03 × 10−05 cm2/s, accordingly. These theoretical investigations provide new insights into defect control in carbon materials to enhance aluminum-ion battery performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
松子儿hhh完成签到,获得积分10
刚刚
传奇3应助千流采纳,获得10
刚刚
1秒前
1秒前
蒲公英完成签到,获得积分10
1秒前
chenying完成签到,获得积分10
1秒前
1秒前
hyf发布了新的文献求助10
1秒前
Accept发布了新的文献求助10
1秒前
春光RanRan发布了新的文献求助10
2秒前
2秒前
YCG完成签到 ,获得积分10
2秒前
2秒前
斯文败类应助俊俊采纳,获得30
2秒前
ikun发布了新的文献求助10
3秒前
3秒前
香蕉觅云应助Saluzi采纳,获得10
3秒前
Cccc完成签到,获得积分10
3秒前
淡淡的航空完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
lnk123发布了新的文献求助10
5秒前
5秒前
小李发布了新的文献求助10
6秒前
付一鸣发布了新的文献求助10
6秒前
Tonsil01发布了新的文献求助10
6秒前
6秒前
whisper发布了新的文献求助10
6秒前
千空完成签到,获得积分10
6秒前
6秒前
华仔应助Seiswan采纳,获得10
7秒前
林小不脏发布了新的文献求助10
7秒前
我是哑巴完成签到,获得积分10
7秒前
狂野的河马完成签到,获得积分10
7秒前
FBQZDJG2122完成签到,获得积分10
7秒前
8秒前
勤奋的松鼠完成签到,获得积分10
8秒前
sb完成签到,获得积分10
9秒前
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009557
求助须知:如何正确求助?哪些是违规求助? 3549561
关于积分的说明 11302629
捐赠科研通 3284139
什么是DOI,文献DOI怎么找? 1810469
邀请新用户注册赠送积分活动 886322
科研通“疑难数据库(出版商)”最低求助积分说明 811345