非布索坦
血管内皮生长因子受体
医学
内分泌学
内科学
增生
睾酮(贴片)
高尿酸血症
尿酸
作者
Asmaa Mohamed Abdel-Aziz,Nashwa Fathy Gamal El-Tahawy,Medhat Atta Salah Abdel haleem,Mostafa Abdulghafoor Mohammed,Ahmed Ali,Yasmine F. Ibrahim
标识
DOI:10.1016/j.ejphar.2020.173631
摘要
Abstract Benign prostatic hyperplasia (BPH) is a common male disorder. Febuxostat is a non-purine, selective inhibitor of xanthine oxidase (XO), which has a strong antioxidant capacity and pleiotropic pharmacological properties. This study's objective was to explore the potential ameliorative effects of febuxostat against testosterone-induced BPH in rats. Febuxostat (10 mg/kg/day, per os [p.o.]) prevented increased prostate index levels, serum levels of prostate-specific antigen (PSA), and testosterone levels compared to animals treated with testosterone alone, when administered for 28 days. Histological examination indicated that febuxostat dramatically ameliorated pathological changes in the prostate architecture compared to the testosterone group. Similarly, febuxostat markedly improved testosterone-induced oxidative stress by inhibiting the increase in lipid peroxide and nitrite content, and by reducing the level of depletion of reduced glutathione (GSH) and superoxide dismutase (SOD) activity, which significantly reduced the prostate content of pro-inflammatory cytokines, including tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6). Furthermore, febuxostat significantly reduced the prostatic content, both in terms of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) messenger ribonucleic acid (mRNA) levels, and of protein levels. Moreover, compared to the testosterone group, febuxostat's beneficial effects prevented the increase in growth factors, comprising vascular endothelial cell growth factor A (VEGF-A) and transforming growth factor beta (TGF-β) protein levels. Its ameliorating effects were equal to those of finasteride, which is the most widely used remedy for BPH. In conclusion, this study provides novel evidence that febuxostat experimentally attenuates testosterone-induced BPH in rats, at least in part by inhibiting iNOS/COX-2 and VEGF/TGF-β pathways.
科研通智能强力驱动
Strongly Powered by AbleSci AI