Epigenetic Therapies for Osteoarthritis

表观遗传学 骨关节炎 医学 疾病 生物信息学 表观基因组 DNA甲基化 生物 基因 病理 基因表达 遗传学 替代医学
作者
Fiorella C. Grandi,Nidhi Bhutani
出处
期刊:Trends in Pharmacological Sciences [Elsevier]
卷期号:41 (8): 557-569 被引量:39
标识
DOI:10.1016/j.tips.2020.05.008
摘要

Despite its prevalence, osteoarthritis (OA) has no clinically approved disease-modifying drug. Numerous drug development efforts focused on single molecules or pathways have failed, signifying the need for multiple gene/protein pathway correction. Several epigenetic regulators that affect large gene networks have been demonstrated to play a role in OA pathogenesis. Targeting these epigenetic regulators as disease modifying OA drugs (DMOADs) holds the potential to reset the aberrant epigenetic landscape found in OA tissues and rewire gene networks. Identifying targeting cofactors can enhance specificity of these new epigenetic drugs. Osteoarthritis (OA) is an age-associated disease characterized by chronic joint pain resulting from degradation of articular cartilage, inflammation of the synovial lining, and changes to the subchondral bone. Despite the wide prevalence, no FDA-approved disease-modifying drugs exist. Recent evidence has demonstrated that epigenetic dysregulation of multiple molecular pathways underlies OA pathogenesis, providing a new mechanistic and therapeutic axis with the advantage of targeting multiple deregulated pathways simultaneously. In this review, we focus on the epigenetic regulators that have been implicated in OA, their individual roles, and potential crosstalk. Finally, we discuss the pharmacological molecules that can modulate their activities and discuss the potential advantages and challenges associated with epigenome-based therapeutics for OA. Osteoarthritis (OA) is an age-associated disease characterized by chronic joint pain resulting from degradation of articular cartilage, inflammation of the synovial lining, and changes to the subchondral bone. Despite the wide prevalence, no FDA-approved disease-modifying drugs exist. Recent evidence has demonstrated that epigenetic dysregulation of multiple molecular pathways underlies OA pathogenesis, providing a new mechanistic and therapeutic axis with the advantage of targeting multiple deregulated pathways simultaneously. In this review, we focus on the epigenetic regulators that have been implicated in OA, their individual roles, and potential crosstalk. Finally, we discuss the pharmacological molecules that can modulate their activities and discuss the potential advantages and challenges associated with epigenome-based therapeutics for OA. BER is the primary DNA repair pathway in mammals. It is responsible for removing small base lesions, often derived from oxidation, alkylation, or other events. The process is started by a glycosylate that recognizes and removes the damaged base. In the context of DNA demethylation, this pathway is utilized first by the targeted oxidation of the base by the TET enzymes and then later this base is acted on by thymine DNA glycosylase (TDG). the developmental process by which long bones are formed. Cartilaginous tissue, formed by the condensation of mesenchymal stem cells, first lays down template for the developing bone. The chondrocytes go through a variety of stages of maturation, including proliferation and maturation into hypertrophic chondrocytes. At this final stage, the cells undergo apoptosis, leaving room for the invasion of the template by osteoblasts to form the final calcified bone. epigenetics is broadly defined as the changes ‘on top of’ (epi) the genome that influence the transcription of genes. While traditionally this has implied chemical changes to DNA or histones, this definition has been broadened to include chromatin folding and organization as well as different coding and noncoding RNAs that can interact with DNA and influence gene expression. the gene body is defined as the entire gene from the transcriptional start site (TSS) to the transcriptional end site. This includes both the exons and introns contained within the gene. the proteins around which DNA is wrapped to form nucleosomes. Histones can be chemically modified in a variety of ways, including methylation, acetylation, and phosphorylation. Depending on the particular histone modification, its positioning, and combination with other marks, the transcriptional machinery can be either recruited or excluded at these chromatin sites. these are responsible for the addition of a methyl group to lysine residues in histones. Depending on the context, this mark can either be activating (H3K79me/me2/me3) or repressive (H3K27me2/me3). Conversely, histone demethylases remove these methylation marks from the target histones. within the contexts of endochondral ossification, this refers to the process by which columnar chondrocytes mature and begin to produce different types of extracellular matrix proteins such as type X collagen. In addition, they begin to undergo apoptosis to make way for the new bone. These changes are controlled, in part, by the transcription factor RUNX2 and by WNT signaling. While a normal part of skeletal development, chondrocyte hypertrophy can also occur in OA, in which chondrocytes, which should normally make type II collagen, switch their fate. These changes are associated with pathology and change the mechanical properties of articular cartilage. several types of mouse OA models exist. In genetic models, a mutation in the mouse genome increases the rate of spontaneous OA, modeling human predisposition to the disease. Other models use surgical intervention to destabilize the joint, including destabilization of the medial meniscus (DMM), tearing of the anterior cruciate ligament (ACLT), or medial meniscectomy (MMx). These models generally represent post-traumatic OA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
mark33442完成签到,获得积分10
5秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
Tonald Yang发布了新的文献求助10
6秒前
wuludie应助科研通管家采纳,获得10
6秒前
wuludie应助科研通管家采纳,获得10
6秒前
wuludie应助科研通管家采纳,获得10
6秒前
搜集达人应助hunajx采纳,获得10
17秒前
24秒前
26秒前
hunajx发布了新的文献求助10
33秒前
34秒前
朴实寻琴完成签到 ,获得积分10
55秒前
DL完成签到 ,获得积分10
1分钟前
cugwzr完成签到,获得积分10
1分钟前
GQ完成签到,获得积分10
1分钟前
Tonald Yang发布了新的文献求助10
1分钟前
1分钟前
快乐的幼丝完成签到 ,获得积分10
1分钟前
芝芝发布了新的文献求助10
1分钟前
赘婿应助hunajx采纳,获得10
1分钟前
三国杀校老弟完成签到,获得积分10
1分钟前
qiao完成签到,获得积分10
1分钟前
好吃完成签到 ,获得积分10
1分钟前
skkr完成签到,获得积分10
1分钟前
宇宙猫完成签到 ,获得积分10
1分钟前
陈米花完成签到,获得积分10
1分钟前
yyjl31完成签到,获得积分0
1分钟前
Simon_chat完成签到,获得积分10
1分钟前
追寻奇迹完成签到 ,获得积分10
1分钟前
吐司炸弹完成签到,获得积分10
2分钟前
mayfly完成签到,获得积分10
2分钟前
wuludie应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
小哈完成签到 ,获得积分10
2分钟前
蔚111完成签到 ,获得积分10
2分钟前
2分钟前
轩少的完成签到 ,获得积分10
2分钟前
独特的凝云完成签到 ,获得积分10
2分钟前
volvoamg发布了新的文献求助10
2分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Treatise on Estuarine and Coastal Science (Second Edition) Volume 3: Biogeochemical Cycling 2024 500
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3341890
求助须知:如何正确求助?哪些是违规求助? 2969246
关于积分的说明 8637910
捐赠科研通 2648911
什么是DOI,文献DOI怎么找? 1450469
科研通“疑难数据库(出版商)”最低求助积分说明 671913
邀请新用户注册赠送积分活动 660986