迭代学习控制
辍学(神经网络)
控制理论(社会学)
弹道
计算机科学
趋同(经济学)
控制器(灌溉)
非线性系统
扰动(地质)
自适应控制
迭代法
数据驱动
数学优化
控制(管理)
算法
数学
人工智能
机器学习
物理
经济
古生物学
天文
生物
量子力学
经济增长
农学
作者
Hua Chen,Qiu Yu-chang,Xinping Guan
标识
DOI:10.1080/00207721.2020.1784492
摘要
In this paper, an enhanced model-free adaptive iterative learning control (EMFAILC) method is proposed, which is applied for a class of nonlinear discrete-time systems with load disturbance and random data dropout. This method is a data-driven control strategy and only the I/O data are required for the controller design. Data are lost at every time instance and iteration instance independently, which allows successive data dropout both in time and iterative axes. By compensating the missing data, the proposed EMFAILC algorithm can track the desired time-varying trajectory. The convergence and effectiveness of the proposed approach are verified by both the rigorous mathematical analysis and the simulation results.
科研通智能强力驱动
Strongly Powered by AbleSci AI