荧光粉
化学
结构精修
量子效率
离子
发光二极管
吸收(声学)
共沉淀
分析化学(期刊)
发光
光致发光
兴奋剂
光电子学
晶体结构
光学
材料科学
无机化学
结晶学
物理
有机化学
色谱法
作者
Junfei Zhang,Lili Liu,Shengan He,Jiaqing Peng,Fu Du,Fengli Yang,Xinyu Ye
出处
期刊:Inorganic Chemistry
[American Chemical Society]
日期:2019-10-25
卷期号:58 (22): 15207-15215
被引量:43
标识
DOI:10.1021/acs.inorgchem.9b02140
摘要
To improve absorption efficiency (AE) and subsequently improve external quantum efficiency (EQE) remains one of the significant challenges for Mn4+-doped red-emitting fluoride phosphors. In this study, we propose to use Mn4+ as a part of matrix to enhance the AE of fluoride phosphors. Red-emission phosphors Cs2MnF6, Cs2MnF6:Sc3+, and Cs2MnF6:Si4+ were synthesized successfully by a coprecipitation method. The Rietveld refinement of X-ray diffraction reveals that this red phosphor exhibits a cubic structure in Fm3̅m space group. Owing to Mn4+ being a part of matrix, this kind of red phosphor possesses an extremely high AE, which can be promoted to 88%. The doping of Sc3+ and Si4+ ions into Cs2MnF6 can effectively increase the luminescence intensity to 253 and 232%, respectively, relative to that of Cs2MnF6. The relative emission intensity of Cs2MnF6:5%Si4+ red phosphor preserves about 115% when temperature rises to 175 °C. By employing Cs2MnF6:5%Si4+ as a red-emitting component, high-performance LED-1 with Ra = 86.2, R9 = 82.1 and CCT = 3297 K, and LED-2 with an ultrawide color gamut (NTSC value of 122.3% and rec. 2020 value of 91.3%) are obtained. This work may provide a new idea to explore a new type of fluoride phosphor with high EQE for high-performance white-light-emitting diodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI