An improved whale optimization algorithm for forecasting water resources demand

计算机科学 数学优化 水准点(测量) 水资源 算法 人工智能 机器学习 数据挖掘 数学 大地测量学 生态学 生物 地理
作者
Wenyan Guo,Ting Liu,Fang Dai,Peng Xu
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:86: 105925-105925 被引量:75
标识
DOI:10.1016/j.asoc.2019.105925
摘要

Water demand forecasting can promote the rational use of water resources and alleviate the pressure on water demand. By analyzing the use of water resources, this paper establishes three models of water demand forecasting, logarithmic model, linear and exponential combination model and linear, exponential and logarithmic hybrid models. In order to accurately estimate the demand for water resources, an improved whale optimization algorithm based on social learning and wavelet mutation strategy is proposed. The new algorithm designs a new linear incremental probability, which increases the possibility of global search of the algorithm. Based on the social learning principle, the social ranking and social influence are used to construct the social network for the individual, and the adaptive neighborhood learning strategy based on the network relationship is established to achieve the exchange and sharing of information between groups. The Morlet wavelet mutation mechanism is integrated to realize the dynamic adjustment of the mutation space, which enhances the ability of the algorithm to escape from local optimization. The latest CEC2017 benchmark functions confirms the superiority of the proposed algorithm. The water consumption from 2004 to 2016 in Shaanxi Province of China is used for the experiment. The results show that the performance of the proposed algorithm for solving the three water resources forecasting model is better in comparison to other algorithms. The prediction accuracy is as high as 99.68%, which verified the validity of the model and the practicality of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Asa发布了新的文献求助10
刚刚
1秒前
花花发布了新的文献求助10
1秒前
YufanZhang完成签到,获得积分10
1秒前
传奇3应助余欣采纳,获得10
1秒前
1秒前
1秒前
1秒前
饱满夏瑶完成签到,获得积分10
2秒前
2秒前
隐形曼青应助flysky120采纳,获得10
2秒前
CNSSCI完成签到,获得积分10
2秒前
CipherSage应助朝暾采纳,获得10
3秒前
4秒前
鸽子发布了新的文献求助10
4秒前
5秒前
黄淮科研小白龙完成签到 ,获得积分10
5秒前
5秒前
瘦瘦青荷完成签到,获得积分10
5秒前
甜甜的觅夏完成签到,获得积分10
5秒前
百里丹珍发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
深情安青应助临界采纳,获得10
6秒前
LW完成签到,获得积分10
6秒前
Mystic发布了新的文献求助10
6秒前
亚婷儿完成签到,获得积分10
7秒前
AQ完成签到,获得积分10
7秒前
YufanZhang发布了新的文献求助10
8秒前
8秒前
迅速的巧曼完成签到 ,获得积分10
8秒前
8秒前
8秒前
专注无声发布了新的文献求助10
9秒前
饱满夏瑶发布了新的文献求助10
9秒前
Pursuit发布了新的文献求助10
9秒前
华仔应助ying采纳,获得10
10秒前
10秒前
解语花发布了新的文献求助10
10秒前
醒醒发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097313
求助须知:如何正确求助?哪些是违规求助? 4309783
关于积分的说明 13428428
捐赠科研通 4137300
什么是DOI,文献DOI怎么找? 2266533
邀请新用户注册赠送积分活动 1269654
关于科研通互助平台的介绍 1205978