An improved whale optimization algorithm for forecasting water resources demand

计算机科学 数学优化 水准点(测量) 水资源 算法 人工智能 机器学习 数据挖掘 数学 生态学 大地测量学 生物 地理
作者
Wenyan Guo,Ting Liu,Fang Dai,Peng Xu
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:86: 105925-105925 被引量:75
标识
DOI:10.1016/j.asoc.2019.105925
摘要

Water demand forecasting can promote the rational use of water resources and alleviate the pressure on water demand. By analyzing the use of water resources, this paper establishes three models of water demand forecasting, logarithmic model, linear and exponential combination model and linear, exponential and logarithmic hybrid models. In order to accurately estimate the demand for water resources, an improved whale optimization algorithm based on social learning and wavelet mutation strategy is proposed. The new algorithm designs a new linear incremental probability, which increases the possibility of global search of the algorithm. Based on the social learning principle, the social ranking and social influence are used to construct the social network for the individual, and the adaptive neighborhood learning strategy based on the network relationship is established to achieve the exchange and sharing of information between groups. The Morlet wavelet mutation mechanism is integrated to realize the dynamic adjustment of the mutation space, which enhances the ability of the algorithm to escape from local optimization. The latest CEC2017 benchmark functions confirms the superiority of the proposed algorithm. The water consumption from 2004 to 2016 in Shaanxi Province of China is used for the experiment. The results show that the performance of the proposed algorithm for solving the three water resources forecasting model is better in comparison to other algorithms. The prediction accuracy is as high as 99.68%, which verified the validity of the model and the practicality of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助yysghr采纳,获得10
刚刚
万能图书馆应助毛毛采纳,获得10
1秒前
bkagyin应助Genius采纳,获得10
1秒前
cing完成签到,获得积分10
5秒前
7秒前
badguyGJ完成签到,获得积分10
7秒前
东木应助你怎么睡得着觉采纳,获得20
8秒前
kunkun完成签到,获得积分10
8秒前
核桃应助Lili采纳,获得10
8秒前
9秒前
诚心以冬发布了新的文献求助10
10秒前
桐桐应助核桃采纳,获得10
10秒前
研友_VZG7GZ应助核桃采纳,获得10
11秒前
无花果应助核桃采纳,获得30
11秒前
badguyGJ发布了新的文献求助10
11秒前
善学以致用应助阳光BOY采纳,获得10
11秒前
酷酷海白完成签到 ,获得积分10
11秒前
索多倍发布了新的文献求助10
12秒前
可爱的函函应助aldehyde采纳,获得10
12秒前
14秒前
15秒前
张涛发布了新的文献求助50
15秒前
zpl发布了新的文献求助10
15秒前
金色稻谷发布了新的文献求助10
17秒前
王哒哒发布了新的文献求助10
19秒前
李健的粉丝团团长应助ly采纳,获得10
20秒前
脑洞疼应助zpl采纳,获得10
22秒前
22秒前
领导范儿应助潘潘采纳,获得10
24秒前
追寻书雁完成签到 ,获得积分10
26秒前
Bellis完成签到 ,获得积分10
26秒前
聪慧板凳完成签到,获得积分10
26秒前
28秒前
无花果应助能干的吐司采纳,获得10
28秒前
星辰大海应助Mendle采纳,获得10
29秒前
29秒前
35秒前
36秒前
丰富的初南完成签到,获得积分20
36秒前
spring_IMU完成签到,获得积分10
37秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962236
求助须知:如何正确求助?哪些是违规求助? 3508458
关于积分的说明 11140902
捐赠科研通 3241109
什么是DOI,文献DOI怎么找? 1791341
邀请新用户注册赠送积分活动 872825
科研通“疑难数据库(出版商)”最低求助积分说明 803382