An improved whale optimization algorithm for forecasting water resources demand

计算机科学 数学优化 水准点(测量) 水资源 算法 人工智能 机器学习 数据挖掘 数学 大地测量学 生态学 生物 地理
作者
Wenyan Guo,Ting Liu,Fang Dai,Peng Xu
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:86: 105925-105925 被引量:75
标识
DOI:10.1016/j.asoc.2019.105925
摘要

Water demand forecasting can promote the rational use of water resources and alleviate the pressure on water demand. By analyzing the use of water resources, this paper establishes three models of water demand forecasting, logarithmic model, linear and exponential combination model and linear, exponential and logarithmic hybrid models. In order to accurately estimate the demand for water resources, an improved whale optimization algorithm based on social learning and wavelet mutation strategy is proposed. The new algorithm designs a new linear incremental probability, which increases the possibility of global search of the algorithm. Based on the social learning principle, the social ranking and social influence are used to construct the social network for the individual, and the adaptive neighborhood learning strategy based on the network relationship is established to achieve the exchange and sharing of information between groups. The Morlet wavelet mutation mechanism is integrated to realize the dynamic adjustment of the mutation space, which enhances the ability of the algorithm to escape from local optimization. The latest CEC2017 benchmark functions confirms the superiority of the proposed algorithm. The water consumption from 2004 to 2016 in Shaanxi Province of China is used for the experiment. The results show that the performance of the proposed algorithm for solving the three water resources forecasting model is better in comparison to other algorithms. The prediction accuracy is as high as 99.68%, which verified the validity of the model and the practicality of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
儒雅的焦发布了新的文献求助30
2秒前
CipherSage应助海绵徐采纳,获得10
3秒前
我是老大应助海绵徐采纳,获得10
3秒前
timikk发布了新的文献求助10
3秒前
开朗指甲油完成签到,获得积分20
3秒前
3秒前
4秒前
NexusExplorer应助皇甫契采纳,获得10
4秒前
5秒前
王经纬完成签到,获得积分10
5秒前
5秒前
CipherSage应助R66采纳,获得10
6秒前
6秒前
顾矜应助太子长琴采纳,获得30
6秒前
6秒前
汉堡包应助老迟的新瑶采纳,获得10
6秒前
NexusExplorer应助侧耳倾听采纳,获得10
7秒前
cocolu应助雨碎寒江采纳,获得10
8秒前
辉hui发布了新的文献求助10
8秒前
sketch完成签到,获得积分10
8秒前
晨曦微露完成签到,获得积分10
8秒前
Orange应助小李在读研采纳,获得10
9秒前
9秒前
9秒前
莹莹发布了新的文献求助10
10秒前
健康的奄发布了新的文献求助10
10秒前
穆青发布了新的文献求助10
10秒前
Liolsy发布了新的文献求助10
10秒前
nn应助小拉拉采纳,获得10
10秒前
幽默不愁发布了新的文献求助30
11秒前
orixero应助MOD采纳,获得10
12秒前
12秒前
今后应助清脆的采柳采纳,获得10
12秒前
skyinner完成签到 ,获得积分10
13秒前
8R60d8应助五星大厨小熊采纳,获得10
13秒前
13秒前
白河完成签到,获得积分10
13秒前
欣慰汉堡发布了新的文献求助10
14秒前
14秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490736
求助须知:如何正确求助?哪些是违规求助? 3077538
关于积分的说明 9149233
捐赠科研通 2769733
什么是DOI,文献DOI怎么找? 1519934
邀请新用户注册赠送积分活动 704390
科研通“疑难数据库(出版商)”最低求助积分说明 702148