亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Real-time optimization using reinforcement learning

强化学习 计算机科学 人工神经网络 解算器 粒子群优化 启发式 过程(计算) 人工智能 集合(抽象数据类型) 机器学习 操作系统 程序设计语言
作者
Kody M. Powell,Derek Machalek,Titus Quah
出处
期刊:Computers & Chemical Engineering [Elsevier]
卷期号:143: 107077-107077 被引量:58
标识
DOI:10.1016/j.compchemeng.2020.107077
摘要

This work introduces a novel methodology for real-time optimization (RTO) of process systems using reinforcement learning (RL), where optimal decisions in response to external stimuli become embedded into a neural network. This is in contrast to the conventional RTO methodology, where a process model is solved repeatedly for optimality. This reinforcement learning real-time optimization methodology (RL-RTO) utilizes an actor-critic architecture similar to that being used in dynamic control research. However, the methodology presented here is purely for steady-state optimization, which is a novel feature of this work. This work also presents a novel, hybrid training methodology, where a gradient-based optimization solver is used for the training the value network (or critic) and a meta-heuristic optimization algorithm (particle swarm optimization or PSO) is used for training the policy network (or actor). Using this novel training algorithm, the neural networks representing the RL application can be updated in real-time or by using a batch-online training methodology. This technique allows for a solver to utilize the entire data set and attempt to find a global optimum, rather than by taking smaller, incremental update steps after each new data point is collected. As the process system runs and more data becomes available, the critic and the actor networks can be updated in sequence so that the RL-RTO application continually updates itself and gets closer to approaching true optimality. A process system (a chemical reactor) is used as a demonstration case study and also to compare the performance of RL-RTO to a conventional RTO methodology, which uses a near-perfect first principles model of the system, combined with a nonlinear programming (NLP) optimization technique. Each of these methods is compared to a brute force operational methodology in which the system's product throughput is maximized. The RL-RTO application demonstrates promise, as it improves the reactor's annual profit by 9.6%. By comparison, the first principles plus NLP method improves the profit by 17.2%. These RL-RTO results, while promising, indicate that there is still more development needed for RL-RTO to be a viable competitor to the conventional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JZ完成签到,获得积分10
46秒前
JZ发布了新的文献求助10
51秒前
1分钟前
Owen应助陈媛采纳,获得10
1分钟前
章鱼完成签到,获得积分10
1分钟前
4分钟前
陈媛发布了新的文献求助10
4分钟前
kuoping完成签到,获得积分10
4分钟前
6分钟前
PD完成签到,获得积分10
6分钟前
7分钟前
7分钟前
义气的书雁完成签到,获得积分10
7分钟前
8分钟前
andrele发布了新的文献求助10
8分钟前
谦也静熵完成签到,获得积分10
9分钟前
通科研完成签到 ,获得积分10
9分钟前
11分钟前
andrele发布了新的文献求助10
11分钟前
陈媛发布了新的文献求助10
12分钟前
sasa发布了新的文献求助10
12分钟前
sasa完成签到,获得积分10
12分钟前
满地枫叶完成签到,获得积分20
13分钟前
joanna完成签到,获得积分10
13分钟前
满地枫叶发布了新的文献求助10
13分钟前
13分钟前
M先生完成签到,获得积分10
13分钟前
14分钟前
14分钟前
tlx发布了新的文献求助10
14分钟前
14分钟前
14分钟前
14分钟前
15分钟前
15分钟前
小圆圈发布了新的文献求助30
15分钟前
兴奋的宛亦完成签到,获得积分20
15分钟前
zhanglongfei发布了新的文献求助10
15分钟前
15分钟前
小圆圈发布了新的文献求助10
15分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150609
求助须知:如何正确求助?哪些是违规求助? 2802008
关于积分的说明 7846050
捐赠科研通 2459372
什么是DOI,文献DOI怎么找? 1309219
科研通“疑难数据库(出版商)”最低求助积分说明 628696
版权声明 601757