Real-time optimization using reinforcement learning

强化学习 计算机科学 人工神经网络 解算器 粒子群优化 启发式 过程(计算) 人工智能 集合(抽象数据类型) 机器学习 操作系统 程序设计语言
作者
Kody M. Powell,Derek Machalek,Titus Quah
出处
期刊:Computers & Chemical Engineering [Elsevier BV]
卷期号:143: 107077-107077 被引量:58
标识
DOI:10.1016/j.compchemeng.2020.107077
摘要

This work introduces a novel methodology for real-time optimization (RTO) of process systems using reinforcement learning (RL), where optimal decisions in response to external stimuli become embedded into a neural network. This is in contrast to the conventional RTO methodology, where a process model is solved repeatedly for optimality. This reinforcement learning real-time optimization methodology (RL-RTO) utilizes an actor-critic architecture similar to that being used in dynamic control research. However, the methodology presented here is purely for steady-state optimization, which is a novel feature of this work. This work also presents a novel, hybrid training methodology, where a gradient-based optimization solver is used for the training the value network (or critic) and a meta-heuristic optimization algorithm (particle swarm optimization or PSO) is used for training the policy network (or actor). Using this novel training algorithm, the neural networks representing the RL application can be updated in real-time or by using a batch-online training methodology. This technique allows for a solver to utilize the entire data set and attempt to find a global optimum, rather than by taking smaller, incremental update steps after each new data point is collected. As the process system runs and more data becomes available, the critic and the actor networks can be updated in sequence so that the RL-RTO application continually updates itself and gets closer to approaching true optimality. A process system (a chemical reactor) is used as a demonstration case study and also to compare the performance of RL-RTO to a conventional RTO methodology, which uses a near-perfect first principles model of the system, combined with a nonlinear programming (NLP) optimization technique. Each of these methods is compared to a brute force operational methodology in which the system's product throughput is maximized. The RL-RTO application demonstrates promise, as it improves the reactor's annual profit by 9.6%. By comparison, the first principles plus NLP method improves the profit by 17.2%. These RL-RTO results, while promising, indicate that there is still more development needed for RL-RTO to be a viable competitor to the conventional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小希完成签到,获得积分10
1秒前
log_10x完成签到 ,获得积分10
2秒前
耶耶耶完成签到,获得积分10
3秒前
山丘发布了新的文献求助10
3秒前
3秒前
3秒前
欢喜嘉懿完成签到,获得积分20
5秒前
中和皇极完成签到,获得积分0
5秒前
ddd发布了新的文献求助10
6秒前
爆米花应助肖雪依采纳,获得10
6秒前
余南发布了新的文献求助10
7秒前
木木发布了新的文献求助50
8秒前
Ava应助达克赛德采纳,获得10
10秒前
兴奋的小虾米完成签到,获得积分10
10秒前
10秒前
爆米花应助Alioth采纳,获得10
11秒前
兮兮完成签到,获得积分10
11秒前
ljx完成签到 ,获得积分10
13秒前
13秒前
14秒前
科研通AI2S应助sakura采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
不吃香菜发布了新的文献求助100
15秒前
小药童完成签到 ,获得积分10
16秒前
山丘完成签到,获得积分10
16秒前
17秒前
17秒前
skywalker发布了新的文献求助10
18秒前
骑个柯基完成签到,获得积分10
19秒前
yyfdqms完成签到,获得积分10
20秒前
meat12应助hhh采纳,获得10
21秒前
21秒前
22秒前
23秒前
fujiaxing完成签到,获得积分10
25秒前
田一完成签到,获得积分10
25秒前
25秒前
27秒前
时召展发布了新的文献求助10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956172
求助须知:如何正确求助?哪些是违规求助? 3502400
关于积分的说明 11107420
捐赠科研通 3232954
什么是DOI,文献DOI怎么找? 1787093
邀请新用户注册赠送积分活动 870482
科研通“疑难数据库(出版商)”最低求助积分说明 802019