Real-time optimization using reinforcement learning

强化学习 计算机科学 人工神经网络 解算器 粒子群优化 启发式 过程(计算) 人工智能 集合(抽象数据类型) 机器学习 操作系统 程序设计语言
作者
Kody M. Powell,Derek Machalek,Titus Quah
出处
期刊:Computers & Chemical Engineering [Elsevier]
卷期号:143: 107077-107077 被引量:58
标识
DOI:10.1016/j.compchemeng.2020.107077
摘要

This work introduces a novel methodology for real-time optimization (RTO) of process systems using reinforcement learning (RL), where optimal decisions in response to external stimuli become embedded into a neural network. This is in contrast to the conventional RTO methodology, where a process model is solved repeatedly for optimality. This reinforcement learning real-time optimization methodology (RL-RTO) utilizes an actor-critic architecture similar to that being used in dynamic control research. However, the methodology presented here is purely for steady-state optimization, which is a novel feature of this work. This work also presents a novel, hybrid training methodology, where a gradient-based optimization solver is used for the training the value network (or critic) and a meta-heuristic optimization algorithm (particle swarm optimization or PSO) is used for training the policy network (or actor). Using this novel training algorithm, the neural networks representing the RL application can be updated in real-time or by using a batch-online training methodology. This technique allows for a solver to utilize the entire data set and attempt to find a global optimum, rather than by taking smaller, incremental update steps after each new data point is collected. As the process system runs and more data becomes available, the critic and the actor networks can be updated in sequence so that the RL-RTO application continually updates itself and gets closer to approaching true optimality. A process system (a chemical reactor) is used as a demonstration case study and also to compare the performance of RL-RTO to a conventional RTO methodology, which uses a near-perfect first principles model of the system, combined with a nonlinear programming (NLP) optimization technique. Each of these methods is compared to a brute force operational methodology in which the system's product throughput is maximized. The RL-RTO application demonstrates promise, as it improves the reactor's annual profit by 9.6%. By comparison, the first principles plus NLP method improves the profit by 17.2%. These RL-RTO results, while promising, indicate that there is still more development needed for RL-RTO to be a viable competitor to the conventional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WUJIAYU完成签到 ,获得积分10
刚刚
小蘑菇应助小汤圆采纳,获得10
1秒前
认真的小熊饼干完成签到,获得积分10
1秒前
Grayball应助蒙开心采纳,获得10
1秒前
1秒前
真开心完成签到,获得积分10
1秒前
Ava应助点点采纳,获得10
1秒前
Seldomyg完成签到 ,获得积分10
2秒前
鲸是海蓝色关注了科研通微信公众号
2秒前
南亭完成签到,获得积分10
2秒前
Orange应助o10采纳,获得10
3秒前
3秒前
3秒前
小王发布了新的文献求助10
4秒前
初吻还在完成签到,获得积分10
5秒前
MADKAI发布了新的文献求助10
5秒前
Asss完成签到,获得积分10
5秒前
5秒前
时光友岸完成签到,获得积分10
6秒前
7秒前
昭昭完成签到,获得积分10
7秒前
niu1完成签到,获得积分10
8秒前
铃兰完成签到,获得积分10
8秒前
尘尘完成签到,获得积分10
8秒前
9秒前
yan完成签到,获得积分20
9秒前
9秒前
小鹿斑比完成签到 ,获得积分10
10秒前
洛洛完成签到 ,获得积分10
10秒前
浮华乱世完成签到 ,获得积分10
10秒前
otaro完成签到,获得积分10
10秒前
万能图书馆应助zsqqqqq采纳,获得10
10秒前
领导范儿应助zhonghbush采纳,获得10
11秒前
reck发布了新的文献求助10
11秒前
舒服的鱼完成签到 ,获得积分10
11秒前
11秒前
WLL完成签到,获得积分10
11秒前
11秒前
罗mian发布了新的文献求助10
11秒前
轻松的雨旋完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672