Toward Predicting Active Participants in Tweet Streams: A case study on Two Civil Rights Events

计算机科学 溪流 数据挖掘 人工智能 自然语言处理 计算机网络
作者
Xiao Kun Wu,Tian-Fang Zhao,Wei-Neng Chen,Jun Zhang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-1 被引量:7
标识
DOI:10.1109/tkde.2020.3017635
摘要

Online social media arouse much research interest in recent years. In contrast to previous work that focused on the detection of emerging topics, this paper undertakes the prediction of active users in online social events, which is so far rarely explored. This prediction task is formulated as a binary classification problem that built on real-world tweet streams, respectively referring to Ferguson event and New York Chockhold event in this paper. Then, a comprehensive user feature system is designed to characterize the users participated in the events, which includes not only basic statistical characteristics or image-pixel-level features, but also some emotional features and personality features. Next, the Weighted Random Forest (Weighted-RF) classifier is adopted to solve the classification problem. Based on the user feature system and the classifier, the experience of a previous event can be archived and applied to the prediction of later similar events. Experimental results show that the Weighted-RF trained by samples of Ferguson event can effectively predict active users in NYC event, with an AUC value around 0.8392. Besides, the image-content based personality model contributes to the quantitative analysis of population portrait, which brings new perspective to understand the participants of events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平芜尽处完成签到,获得积分10
1秒前
海洋球完成签到,获得积分10
1秒前
1秒前
Singularity应助Fang采纳,获得10
2秒前
2秒前
hsyssb发布了新的文献求助30
2秒前
3秒前
UPUP0707完成签到,获得积分10
3秒前
Akim应助晨曦采纳,获得10
4秒前
鲤鱼导师发布了新的文献求助10
4秒前
4秒前
qgf发布了新的文献求助10
5秒前
英俊的铭应助哈库丹采纳,获得50
5秒前
QQ发布了新的文献求助10
6秒前
达达发布了新的文献求助10
6秒前
小小莫完成签到,获得积分10
6秒前
子车茗应助zzzzzz采纳,获得30
8秒前
鲤鱼吐司完成签到,获得积分10
8秒前
uuu发布了新的文献求助30
8秒前
完美世界应助Revision采纳,获得30
9秒前
Aurora发布了新的文献求助10
9秒前
活力笑天完成签到,获得积分20
10秒前
小小莫发布了新的文献求助10
10秒前
顺利的洋葱关注了科研通微信公众号
10秒前
FashionBoy应助别止采纳,获得10
15秒前
周辉完成签到,获得积分20
15秒前
15秒前
16秒前
FashionBoy应助realzzz采纳,获得10
16秒前
崇林同学完成签到,获得积分10
17秒前
18秒前
科研通AI5应助达达采纳,获得10
19秒前
核桃应助柠檬01210采纳,获得10
19秒前
fansuerte应助柠檬01210采纳,获得10
19秒前
汉堡包应助懂事的梦游者采纳,获得10
19秒前
Hello应助柠檬01210采纳,获得10
19秒前
19秒前
jason0023发布了新的文献求助30
19秒前
ding应助小小莫采纳,获得10
19秒前
哈库丹发布了新的文献求助50
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736105
求助须知:如何正确求助?哪些是违规求助? 3279842
关于积分的说明 10017298
捐赠科研通 2996529
什么是DOI,文献DOI怎么找? 1644131
邀请新用户注册赠送积分活动 781759
科研通“疑难数据库(出版商)”最低求助积分说明 749462