Machine-Learning-Guided Cocrystal Prediction Based on Large Data Base

共晶 虚拟筛选 肌氨酸 化学 计算机科学 分子 从头算 药物发现 人工智能 组合化学 晶体结构预测 机器学习 氢键 有机化学 氨基酸 生物化学 甘氨酸
作者
Dingyan Wang,Zeen Yang,Bingqing Zhu,Xuefeng Mei,Xiaomin Luo
出处
期刊:Crystal Growth & Design [American Chemical Society]
卷期号:20 (10): 6610-6621 被引量:49
标识
DOI:10.1021/acs.cgd.0c00767
摘要

A machine-learning model trained on the whole Cambridge Structural Database was developed to assist high-throughput cocrystal screening. With only 2D structures taken as inputs, the probability of cocrystal formation is returned for two given molecules. All of the cocrystal records in the CSD were used as positive samples, while negative samples were constructed by randomly combining different molecules into chemical pairs. Our model showed a prediction ability comparable with that of a widely used ab initio method in a head-to-head comparison test. Both experimental and virtual cocrystal screening against captopril were conducted at the same time to further validate the model. Two cocrystals of captopril with l-proline and sarcosine were obtained and characterized by PXRD, DSC, and FT-IR. These two coformers were also successfully predicted by our model. These results suggest that the tool we developed can be used to effectively guide coformer selection in the discovery of new cocrystals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助二二二采纳,获得10
刚刚
刚刚
最牛的菠萝隐士完成签到,获得积分10
刚刚
zhang完成签到 ,获得积分10
1秒前
灵犀完成签到,获得积分10
1秒前
ttssooe发布了新的文献求助10
1秒前
CipherSage应助Ll采纳,获得10
2秒前
2秒前
千里发布了新的文献求助10
2秒前
Mia发布了新的文献求助20
3秒前
女神金发布了新的文献求助60
3秒前
3秒前
puny完成签到,获得积分10
3秒前
3秒前
彭于晏应助zhonghbush采纳,获得10
3秒前
啦啦啦啦啦完成签到,获得积分10
4秒前
hmx完成签到,获得积分10
4秒前
忧郁的人英完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
xhy发布了新的文献求助10
4秒前
晴天霹雳3732完成签到,获得积分0
5秒前
carbonhan完成签到,获得积分10
5秒前
MJT10086完成签到,获得积分10
5秒前
5秒前
天天快乐应助阿楠采纳,获得10
6秒前
忧郁的听露完成签到,获得积分20
6秒前
宇文天川完成签到,获得积分10
7秒前
7秒前
三十三完成签到,获得积分10
7秒前
顾矜应助li采纳,获得10
7秒前
7秒前
久久发布了新的文献求助10
8秒前
蔡小葵完成签到 ,获得积分10
8秒前
8秒前
科目三应助cd采纳,获得10
9秒前
研友_LXOvq8完成签到,获得积分10
9秒前
xu完成签到,获得积分10
9秒前
祝雲发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672