亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Feasibility study for use of angiographic parametric imaging and deep neural networks for intracranial aneurysm occlusion prediction

医学 接收机工作特性 闭塞 数字减影血管造影 动脉瘤 放射科 血管造影 核医学 心脏病学 内科学
作者
Mohammad Mahdi Shiraz Bhurwani,Muhammad Waqas,Alexander R. Podgorsak,Kyle Williams,Jason M. Davies,Kenneth V. Snyder,Elad I. Levy,Adnan H. Siddiqui,Ciprian N. Ionita
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:12 (7): 714-719 被引量:31
标识
DOI:10.1136/neurintsurg-2019-015544
摘要

Background Angiographic parametric imaging (API), based on digital subtraction angiography (DSA), is a quantitative imaging tool that may be used to extract contrast flow parameters related to hemodynamic conditions in abnormal pathologies such as intracranial aneurysms (IAs). Objective To investigate the feasibility of using deep neural networks (DNNs) and API to predict IA occlusion using pre- and post-intervention DSAs. Methods We analyzed DSA images of IAs pre- and post-treatment to extract API parameters in the IA dome and the corresponding main artery (un-normalized data). We implemented a two-step correction to account for injection variability (normalized data) and projection foreshortening (relative data). A DNN was trained to predict a binary IA occlusion outcome: occluded/unoccluded. Network performance was assessed with area under the receiver operating characteristic curve (AUROC) and classification accuracy. To evaluate the effect of the proposed corrections, prediction accuracy analysis was performed after each normalization step. Results The study included 190 IAs. The mean and median duration between treatment and follow-up was 9.8 and 8.0 months, respectively. For the un-normalized, normalized, and relative subgroups, the DNN average prediction accuracies for IA occlusion were 62.5% (95% CI 60.5% to 64.4%), 70.8% (95% CI 68.2% to 73.4%), and 77.9% (95% CI 76.2% to 79.6%). The average AUROCs for the same subgroups were 0.48 (0.44–0.52), 0.67 (0.61–0.73), and 0.77 (0.74–0.80). Conclusions The study demonstrated the feasibility of using API and DNNs to predict IA occlusion using only pre- and post-intervention angiographic information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
9秒前
xinxin完成签到,获得积分10
9秒前
xinxin发布了新的文献求助30
14秒前
CodeCraft应助xinxin采纳,获得10
19秒前
24秒前
28秒前
香蕉念薇发布了新的文献求助10
31秒前
Gigi发布了新的文献求助10
35秒前
陆林北完成签到,获得积分10
39秒前
42秒前
科研通AI5应助嬴胡亥采纳,获得10
47秒前
科研通AI5应助纯洁采纳,获得10
1分钟前
1分钟前
嬴胡亥发布了新的文献求助10
1分钟前
科研通AI5应助Guozixin采纳,获得10
1分钟前
1分钟前
1分钟前
嬴胡亥完成签到,获得积分10
1分钟前
纯洁发布了新的文献求助10
1分钟前
科研通AI5应助嬴胡亥采纳,获得10
1分钟前
1分钟前
纯洁完成签到,获得积分10
1分钟前
Guozixin发布了新的文献求助10
2分钟前
在水一方应助科研通管家采纳,获得30
2分钟前
2分钟前
杳鸢应助shuke采纳,获得30
2分钟前
Guozixin完成签到,获得积分10
2分钟前
随聚随分完成签到 ,获得积分10
2分钟前
2分钟前
杳鸢应助ytx采纳,获得10
2分钟前
3分钟前
ksen发布了新的文献求助10
3分钟前
杳鸢应助shuke采纳,获得30
3分钟前
3分钟前
啊桂发布了新的文献求助10
3分钟前
啊桂完成签到,获得积分10
3分钟前
3分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491339
求助须知:如何正确求助?哪些是违规求助? 3077921
关于积分的说明 9151234
捐赠科研通 2770492
什么是DOI,文献DOI怎么找? 1520508
邀请新用户注册赠送积分活动 704589
科研通“疑难数据库(出版商)”最低求助积分说明 702298