Feasibility study for use of angiographic parametric imaging and deep neural networks for intracranial aneurysm occlusion prediction

医学 接收机工作特性 闭塞 数字减影血管造影 动脉瘤 放射科 血管造影 核医学 心脏病学 内科学
作者
Mohammad Mahdi Shiraz Bhurwani,Muhammad Waqas,Alexander R. Podgorsak,Kyle Williams,Jason M. Davies,Kenneth V. Snyder,Elad I. Levy,Adnan H. Siddiqui,Ciprian N. Ionita
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:12 (7): 714-719 被引量:31
标识
DOI:10.1136/neurintsurg-2019-015544
摘要

Background Angiographic parametric imaging (API), based on digital subtraction angiography (DSA), is a quantitative imaging tool that may be used to extract contrast flow parameters related to hemodynamic conditions in abnormal pathologies such as intracranial aneurysms (IAs). Objective To investigate the feasibility of using deep neural networks (DNNs) and API to predict IA occlusion using pre- and post-intervention DSAs. Methods We analyzed DSA images of IAs pre- and post-treatment to extract API parameters in the IA dome and the corresponding main artery (un-normalized data). We implemented a two-step correction to account for injection variability (normalized data) and projection foreshortening (relative data). A DNN was trained to predict a binary IA occlusion outcome: occluded/unoccluded. Network performance was assessed with area under the receiver operating characteristic curve (AUROC) and classification accuracy. To evaluate the effect of the proposed corrections, prediction accuracy analysis was performed after each normalization step. Results The study included 190 IAs. The mean and median duration between treatment and follow-up was 9.8 and 8.0 months, respectively. For the un-normalized, normalized, and relative subgroups, the DNN average prediction accuracies for IA occlusion were 62.5% (95% CI 60.5% to 64.4%), 70.8% (95% CI 68.2% to 73.4%), and 77.9% (95% CI 76.2% to 79.6%). The average AUROCs for the same subgroups were 0.48 (0.44–0.52), 0.67 (0.61–0.73), and 0.77 (0.74–0.80). Conclusions The study demonstrated the feasibility of using API and DNNs to predict IA occlusion using only pre- and post-intervention angiographic information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Profeto应助yoyo20012623采纳,获得10
1秒前
英俊的铭应助标致嫣采纳,获得10
1秒前
向言之完成签到,获得积分10
1秒前
潇湘夜雨完成签到,获得积分10
1秒前
xiaoliu发布了新的文献求助10
2秒前
黑就嘿完成签到,获得积分10
2秒前
踏实的无敌完成签到,获得积分10
2秒前
ethan2801完成签到,获得积分10
2秒前
白石溪完成签到,获得积分10
2秒前
weiyongswust发布了新的文献求助10
3秒前
4秒前
快乐的鱼完成签到,获得积分10
4秒前
sssssssssss完成签到,获得积分10
4秒前
zheng完成签到 ,获得积分10
6秒前
小胡完成签到,获得积分20
10秒前
大气的裙子完成签到,获得积分10
11秒前
11秒前
xy小侠女完成签到,获得积分10
11秒前
文艺小馒头完成签到,获得积分10
11秒前
亭子完成签到,获得积分10
13秒前
zero完成签到,获得积分10
13秒前
华仔应助abc采纳,获得10
13秒前
Kay76完成签到,获得积分10
14秒前
123完成签到,获得积分10
14秒前
luwenxuan完成签到,获得积分10
14秒前
村上春树的摩的完成签到 ,获得积分10
14秒前
dachengzi完成签到,获得积分10
14秒前
健康的绮晴完成签到,获得积分10
15秒前
xiaoliu完成签到,获得积分20
15秒前
允柠完成签到,获得积分10
15秒前
灰光呀完成签到,获得积分10
15秒前
不包含特殊字符完成签到,获得积分10
17秒前
Theodore完成签到,获得积分10
17秒前
完美的发卡完成签到,获得积分10
17秒前
白白完成签到,获得积分10
18秒前
坦率的惊蛰完成签到,获得积分10
19秒前
乐乐完成签到,获得积分10
19秒前
中陆完成签到,获得积分10
19秒前
认真奇异果完成签到,获得积分10
20秒前
学术狗完成签到,获得积分10
20秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015806
求助须知:如何正确求助?哪些是违规求助? 3555777
关于积分的说明 11318714
捐赠科研通 3288911
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027