Comparison-Based Convolutional Neural Networks for Cervical Cell/Clumps Detection in the Limited Data Scenario

卷积神经网络 计算机科学 人工智能
作者
Yixiong Liang,Zhihong Tang,Meng Yan,Jialin Chen,Qing Liu,Yao Xiang
出处
期刊:Cornell University - arXiv 被引量:6
标识
DOI:10.48550/arxiv.1810.05952
摘要

Automated detection of cervical cancer cells or cell clumps has the potential to significantly reduce error rate and increase productivity in cervical cancer screening. However, most traditional methods rely on the success of accurate cell segmentation and discriminative hand-crafted features extraction. Recently there are emerging deep learning-based methods which train convolutional neural networks (CNN) to classify image patches, but they are computationally expensive. In this paper we propose an efficient CNN-based object detection methods for cervical cancer cells/clumps detection. Specifically, we utilize the state-of-the-art two-stage object detection method, the Faster-RCNN with Feature Pyramid Network (FPN) as the baseline and propose a novel comparison detector to deal with the limited data problem. The key idea is that classify the proposals by comparing with the reference samples of each category in object detection. In addition, we propose to learn the reference samples of the background from data instead of manually choosing them by some heuristic rules. Experimental results show that the proposed Comparison Detector yields significant improvement on the small dataset, achieving a mean Average Precision (mAP) of 26.3% and an Average Recall (AR) of 35.7%, both improving about 20 points compared to the baseline. Moreover, Comparison Detector improved AR by 4.6 points and achieved marginally better performance in terms of mAP compared with baseline model when training on the medium dataset. Our method is promising for the development of automation-assisted cervical cancer screening systems. Code is available at https://github.com/kuku-sichuan/ComparisonDetector.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助活力的母鸡采纳,获得10
刚刚
Ir发布了新的文献求助10
1秒前
westbrook完成签到,获得积分10
1秒前
暮封完成签到,获得积分10
1秒前
1秒前
又又发布了新的文献求助10
1秒前
meimei完成签到,获得积分20
3秒前
Kiwi完成签到,获得积分10
3秒前
4秒前
4秒前
科研通AI2S应助高兴的彩虹采纳,获得10
5秒前
聪明亦玉发布了新的文献求助20
5秒前
NXK完成签到,获得积分10
6秒前
6秒前
6秒前
cccc完成签到,获得积分10
6秒前
7秒前
7秒前
pluto应助pfuhh采纳,获得10
8秒前
负责长颈鹿完成签到,获得积分10
9秒前
meimei发布了新的文献求助10
9秒前
斯文败类应助自然的砖头采纳,获得10
9秒前
854fycchjh发布了新的文献求助30
10秒前
wshengnan完成签到,获得积分10
11秒前
12秒前
科研通AI5应助踏实雪一采纳,获得10
12秒前
13秒前
Wuhuhu应助安详的甜瓜采纳,获得10
13秒前
14秒前
乐乐应助负责长颈鹿采纳,获得10
14秒前
充电宝应助不胜玖采纳,获得50
14秒前
16秒前
Doc_Chen完成签到,获得积分20
16秒前
17秒前
可爱的函函应助liu采纳,获得10
17秒前
yuxiaoye关注了科研通微信公众号
18秒前
18秒前
18秒前
超帅的怡发布了新的文献求助10
20秒前
PGS完成签到,获得积分10
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737545
求助须知:如何正确求助?哪些是违规求助? 3281271
关于积分的说明 10024202
捐赠科研通 2998002
什么是DOI,文献DOI怎么找? 1644955
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749794