Understanding Strengths and Weaknesses of Complementary Sensor Modalities in Early Fusion for Object Detection

激光雷达 计算机视觉 人工智能 计算机科学 RGB颜色模型 目标检测 稳健性(进化) 模式 传感器融合 探测器 视觉对象识别的认知神经科学 分割 对象(语法) 遥感 地理 电信 社会科学 生物化学 化学 社会学 基因
作者
Eduardo R. Corral-Soto,Bingbing Liu
标识
DOI:10.1109/iv47402.2020.9304558
摘要

In object detection for autonomous driving and robotic applications, conventional RGB cameras often fail to sense objects under extreme illumination conditions and on texture-less surfaces, while LIDAR sensors often fail to sense small or thin objects located far from the sensor. For these reasons, an intuitive and obvious choice for perception system designers is to install multiple sensors of different modalities to increase (in theory) the detection robustness. In this paper we focus on the analysis of an object detector that performs early fusion of RGB images and LIDAR 3D points. Our goal is to go beyond the intuition of simply adding more sensor modalities to improve performance, and instead analyze, quantify, and understand the performance differences, strengths and weaknesses of the object detector under three different modalities: 1) RGB-only, 2) LIDAR-only, and 3) Early fusion (RGB and LIDAR), and under two key scene variables: 1) Distance of objects from the sensor (density), and 2) Illumination (Darkness). We also propose methodologies to generate 2D weak semantic training masks, and a methodology to evaluate the object detection performance separately at different distance ranges, which provides a more reliable detection performance measure and correlates well with object LIDAR point density.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欧阳懿完成签到 ,获得积分10
1秒前
yinfan完成签到,获得积分10
1秒前
CodeCraft应助iiing采纳,获得10
1秒前
万能图书馆应助iiing采纳,获得10
1秒前
CipherSage应助iiing采纳,获得10
1秒前
打打应助iiing采纳,获得10
1秒前
彭于晏应助iiing采纳,获得10
1秒前
希望天下0贩的0应助iiing采纳,获得10
1秒前
1秒前
脑洞疼应助iiing采纳,获得10
1秒前
丫丫完成签到,获得积分10
1秒前
BowieHuang应助iiing采纳,获得10
1秒前
1秒前
2秒前
wly发布了新的文献求助10
2秒前
miao3718发布了新的文献求助10
3秒前
3秒前
传统的松鼠完成签到,获得积分10
3秒前
东白湖的无奈完成签到,获得积分10
3秒前
竹叶青完成签到,获得积分10
4秒前
Naomi发布了新的文献求助10
4秒前
酷酷的友灵完成签到,获得积分20
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
ghostR发布了新的文献求助10
5秒前
5秒前
6秒前
一路硕博发布了新的文献求助10
6秒前
赘婿应助快乐的思真采纳,获得10
6秒前
沉默毛衣发布了新的文献求助10
6秒前
王桐发布了新的文献求助10
6秒前
gezid完成签到 ,获得积分10
7秒前
研友_VZG7GZ应助烂漫的雁开采纳,获得10
7秒前
mihriban完成签到,获得积分10
7秒前
板栗完成签到 ,获得积分10
7秒前
7秒前
FashionBoy应助等待的以筠采纳,获得50
8秒前
在水一方应助cc采纳,获得10
8秒前
Orange应助开朗的早晨采纳,获得30
8秒前
暖暖完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719182
求助须知:如何正确求助?哪些是违规求助? 5255402
关于积分的说明 15287996
捐赠科研通 4869073
什么是DOI,文献DOI怎么找? 2614641
邀请新用户注册赠送积分活动 1564561
关于科研通互助平台的介绍 1521851