X射线光电子能谱
材料科学
兴奋剂
电子结构
光催化
掺杂剂
氢
可逆氢电极
密度泛函理论
带隙
电极
分解水
纳米技术
化学物理
化学工程
光电子学
化学
电化学
催化作用
物理化学
计算化学
工作电极
工程类
有机化学
生物化学
作者
Benjamin Moss,Qian Wang,Keith T. Butler,Ricardo Grau‐Crespo,Shababa Selim,Anna Regoutz,Takashi Hisatomi,Robert Godin,David J. Payne,Andreas Kafizas,Kazunari Domen,Ludmilla Steier,James R. Durrant
出处
期刊:Nature Materials
[Springer Nature]
日期:2021-01-11
卷期号:20 (4): 511-517
被引量:96
标识
DOI:10.1038/s41563-020-00868-2
摘要
Recently, high solar-to-hydrogen efficiencies were demonstrated using La and Rh co-doped SrTiO3 (La,Rh:SrTiO3) incorporated into a low-cost and scalable Z-scheme device, known as a photocatalyst sheet. However, the unique properties that enable La,Rh:SrTiO3 to support this impressive performance are not fully understood. Combining in situ spectroelectrochemical measurements with density functional theory and photoelectron spectroscopy produces a depletion model of Rh:SrTiO3 and La,Rh:SrTiO3 photocatalyst sheets. This reveals remarkable properties, such as deep flatband potentials (+2 V versus the reversible hydrogen electrode) and a Rh oxidation state dependent reorganization of the electronic structure, involving the loss of a vacant Rh 4d mid-gap state. This reorganization enables Rh:SrTiO3 to be reduced by co-doping without compromising the p-type character. In situ time-resolved spectroscopies show that the electronic structure reorganization induced by Rh reduction controls the electron lifetime in photocatalyst sheets. In Rh:SrTiO3, enhanced lifetimes can only be obtained at negative applied potentials, where the complete Z-scheme operates inefficiently. La co-doping fixes Rh in the 3+ state, which results in long-lived photogenerated electrons even at very positive potentials (+1 V versus the reversible hydrogen electrode), in which both components of the complete device operate effectively. This understanding of the role of co-dopants provides a new insight into the design principles for water-splitting devices based on bandgap-engineered metal oxides. Understanding the origin of unprecedented solar-to-hydrogen efficiencies in doped SrTiO3 has proved challenging. Linking in situ charge accumulation to electronic structure in this system now reveals design principles for hydrogen-evolving photocatalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI