Microstructure formation and mechanical properties of ODS steels built by laser additive manufacturing of nanoparticle coated iron-chromium powders

材料科学 微观结构 纳米颗粒 冶金 扫描电子显微镜 复合材料 纳米技术
作者
Carlos Doñate‐Buendía,Philipp Kürnsteiner,Felix Stern,Markus Benjamin Wilms,René Streubel,İhsan Murat Kusoglu,Jochen Tenkamp,Enrico Bruder,Norbert Pirch,Stephan Barcikowski,Karsten Durst,Johannes Henrich Schleifenbaum,Frank Walther,Baptiste Gault,Bilal Gökce
出处
期刊:Acta Materialia [Elsevier]
卷期号:206: 116566-116566 被引量:90
标识
DOI:10.1016/j.actamat.2020.116566
摘要

Oxide dispersion strengthened (ODS) steels are known for their enhanced mechanical performance at high temperatures or under radiation exposure. Their microstructure depends on the manufacturing process, from the nanoparticle addition to the base steel powder, to the processing of the nanoparticle enriched powder. The optimization and control of the processing steps still represent a challenge to establish a clear methodology for the additive manufacturing of ODS steels. Here, we evaluate the microstructure, nanoparticle evolution, and mechanical properties of ODS steels prepared by dielectrophoretic controlled adsorption of 0.08 wt% laser-synthesized yttrium oxide (Y2O3) on an iron-chromium ferritic steel powder (PM2000). The influence of the ODS steel fabrication technique is studied for two standard additive manufacturing techniques, directed energy deposition (DED) and laser powder bed fusion (LPBF). The compressive strength of the ODS steels at 600 °C is increased by 21% and 29% for the DED and LPBF samples, respectively, compared to the DED and LPBF steels manufactured without Y2O3 nanoparticle addition. The Martens hardness is enhanced by 9% for the LPBF ODS steel while no significant change is observed in the DED ODS steel. The microstructure and nanoparticle composition and distribution are evaluated by electron backscatter diffraction, scanning electron microscopy–energy-dispersive X-ray spectroscopy, and atom probe tomography, to compare the microstructural features of DED and LPBF manufactured parts. Smaller grain size and more homogeneous distribution with lower agglomeration of Y-O nanoparticles in the LPBF sample are found to be key factors for enhanced mechanical response at 600 °C. The enhanced mechanical properties of the LPBF-processed sample and the more homogeneous nanoparticle dispersion can be linked to results obtained by finite element methods simulations of the melt pool that show two orders of magnitude faster cooling rates for LPBF than for DED. Therefore, this work presents and validates a complete laser-based methodology for the preparation and processing of an ODS steel, proving the modification of the microstructure and enhancement of the high-temperature strength of the as-built parts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英勇的思天完成签到 ,获得积分10
1秒前
zzqx完成签到,获得积分10
3秒前
起司嗯完成签到,获得积分10
3秒前
开放鸵鸟完成签到,获得积分10
3秒前
徐徐发布了新的文献求助10
3秒前
ZZZ发布了新的文献求助10
4秒前
懵懂的子骞完成签到 ,获得积分10
5秒前
mammoth发布了新的文献求助40
5秒前
5秒前
英俊的铭应助Chang采纳,获得10
6秒前
6秒前
6秒前
kk子完成签到,获得积分10
7秒前
夏橪发布了新的文献求助10
7秒前
JamesPei应助lunan采纳,获得10
8秒前
传奇3应助qing采纳,获得10
8秒前
卫尔摩斯完成签到,获得积分10
9秒前
9秒前
9秒前
沉默牛排发布了新的文献求助10
9秒前
科研通AI5应助独特微笑采纳,获得10
9秒前
10秒前
10秒前
碧玉墨绿完成签到,获得积分10
10秒前
xiaoma完成签到,获得积分10
10秒前
11秒前
潇洒的擎苍完成签到,获得积分10
11秒前
刘晓纳发布了新的文献求助10
11秒前
晴子发布了新的文献求助10
11秒前
洛鸢发布了新的文献求助10
12秒前
立马毕业完成签到,获得积分10
12秒前
卫尔摩斯发布了新的文献求助10
12秒前
BINBIN完成签到 ,获得积分10
12秒前
hfgeyt完成签到,获得积分10
13秒前
sakurai应助背后的诺言采纳,获得10
13秒前
湘华发布了新的文献求助10
14秒前
Jenny应助lan采纳,获得10
14秒前
单薄的飞松完成签到 ,获得积分10
14秒前
醒醒发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762