亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Latent motives guide structure learning during adaptive social choice

不可见的 杠杆(统计) 社会心理学 困境 计算机科学 心理学 认知 社会认知 社会学习 人工智能 认知心理学 认识论 教育学 哲学 神经科学
作者
Jeroen van Baar,Matthew R. Nassar,Wenning Deng,Oriel FeldmanHall
标识
DOI:10.1101/2020.06.06.137893
摘要

Abstract Predicting the behavior of others is an essential part of human cognition that enables strategic social behavior (e.g., cooperation), and is impaired in multiple clinical populations. Despite its ubiquity, social prediction poses a generalization problem that remains poorly understood: We can neither assume that others will simply repeat their past behavior in new settings, nor that their future actions are entirely unrelated to the past. Here we demonstrate that humans solve this challenge using a structure learning mechanism that uncovers other people’s latent, unobservable motives, such as greed and risk aversion. In three studies, participants were tasked with predicting the decisions of another player in multiple unique economic games such as the Prisoner’s Dilemma. Participants achieved accurate social prediction by learning the hidden motivational structure underlying the player’s actions to cooperate or defect (e.g., that greed led to defecting in some cases but cooperation in others). This motive-based abstraction enabled participants to attend to information diagnostic of the player’s next move and disregard irrelevant contextual cues. Moreover, participants who successfully learned another’s motives were more strategic in a subsequent competitive interaction with that player, reflecting that accurate social structure learning can lead to more optimal social behaviors. These findings demonstrate that advantageous social behavior hinges on parsimonious and generalizable mental models that leverage others’ latent intentions. Significance statement A hallmark of human cognition is being able to predict the behavior of others. How do we achieve social prediction given that we routinely encounter others in a dizzying array of social situations? We find people achieve accurate social prediction by inferring another’s hidden motives—motives that do not necessarily have a one-to-one correspondence with observable behaviors. Participants were able to infer another’s motives using a structure learning mechanism that enabled generalization. Individuals used what they learned about others in one setting to predict their actions in an entirely new setting. This cognitive process can explain a wealth of social behaviors, ranging from strategic economic decisions to stereotyping and racial bias.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵睿老婆完成签到 ,获得积分10
1秒前
8秒前
10秒前
10秒前
贺梦妍发布了新的文献求助10
13秒前
luming发布了新的文献求助30
14秒前
凌奕添完成签到 ,获得积分10
14秒前
半城烟火完成签到,获得积分10
30秒前
33秒前
活泼的大船完成签到,获得积分10
34秒前
CATH完成签到 ,获得积分10
35秒前
Rn完成签到 ,获得积分0
35秒前
华仔应助淡定山柏采纳,获得10
36秒前
Trh关注了科研通微信公众号
40秒前
40秒前
静候佳音完成签到 ,获得积分10
41秒前
sinji发布了新的文献求助10
45秒前
46秒前
淡定山柏发布了新的文献求助10
53秒前
JamesPei应助sinji采纳,获得10
54秒前
1分钟前
wh发布了新的文献求助20
1分钟前
1分钟前
sinji完成签到,获得积分10
1分钟前
Trh发布了新的文献求助10
1分钟前
柴郡鹿发布了新的文献求助10
1分钟前
1分钟前
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
赘婿应助欢喜夏之采纳,获得10
1分钟前
1分钟前
千早爱音完成签到,获得积分10
1分钟前
小橙完成签到 ,获得积分10
2分钟前
11222完成签到,获得积分10
2分钟前
2分钟前
moyu123发布了新的文献求助10
2分钟前
Dliii完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
kcl完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723567
求助须知:如何正确求助?哪些是违规求助? 5279237
关于积分的说明 15298904
捐赠科研通 4871988
什么是DOI,文献DOI怎么找? 2616421
邀请新用户注册赠送积分活动 1566259
关于科研通互助平台的介绍 1523143