Latent motives guide structure learning during adaptive social choice

不可见的 杠杆(统计) 社会心理学 困境 计算机科学 心理学 认知 社会认知 社会学习 人工智能 认知心理学 认识论 教育学 哲学 神经科学
作者
Jeroen van Baar,Matthew R. Nassar,Wenning Deng,Oriel FeldmanHall
标识
DOI:10.1101/2020.06.06.137893
摘要

Abstract Predicting the behavior of others is an essential part of human cognition that enables strategic social behavior (e.g., cooperation), and is impaired in multiple clinical populations. Despite its ubiquity, social prediction poses a generalization problem that remains poorly understood: We can neither assume that others will simply repeat their past behavior in new settings, nor that their future actions are entirely unrelated to the past. Here we demonstrate that humans solve this challenge using a structure learning mechanism that uncovers other people’s latent, unobservable motives, such as greed and risk aversion. In three studies, participants were tasked with predicting the decisions of another player in multiple unique economic games such as the Prisoner’s Dilemma. Participants achieved accurate social prediction by learning the hidden motivational structure underlying the player’s actions to cooperate or defect (e.g., that greed led to defecting in some cases but cooperation in others). This motive-based abstraction enabled participants to attend to information diagnostic of the player’s next move and disregard irrelevant contextual cues. Moreover, participants who successfully learned another’s motives were more strategic in a subsequent competitive interaction with that player, reflecting that accurate social structure learning can lead to more optimal social behaviors. These findings demonstrate that advantageous social behavior hinges on parsimonious and generalizable mental models that leverage others’ latent intentions. Significance statement A hallmark of human cognition is being able to predict the behavior of others. How do we achieve social prediction given that we routinely encounter others in a dizzying array of social situations? We find people achieve accurate social prediction by inferring another’s hidden motives—motives that do not necessarily have a one-to-one correspondence with observable behaviors. Participants were able to infer another’s motives using a structure learning mechanism that enabled generalization. Individuals used what they learned about others in one setting to predict their actions in an entirely new setting. This cognitive process can explain a wealth of social behaviors, ranging from strategic economic decisions to stereotyping and racial bias.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助岚风采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
嘟嘟嘟完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
领导范儿应助木木采纳,获得10
4秒前
林间完成签到,获得积分10
4秒前
Gjjjjjjj完成签到,获得积分20
5秒前
5秒前
搜集达人应助ZZZ采纳,获得10
5秒前
科研通AI6.1应助Royalll采纳,获得10
5秒前
5秒前
5秒前
伶俐的冬易完成签到,获得积分10
6秒前
蓝天应助时尚冬亦采纳,获得10
6秒前
Ripples完成签到,获得积分10
7秒前
7秒前
阿紫发布了新的文献求助10
7秒前
汉堡包应助siina采纳,获得10
7秒前
777发布了新的文献求助10
7秒前
sinlar发布了新的文献求助10
8秒前
华仔应助朴实的南露采纳,获得10
8秒前
wuww完成签到,获得积分20
8秒前
8秒前
骑帅骑不快完成签到,获得积分10
8秒前
9秒前
summing发布了新的文献求助10
9秒前
9秒前
香蕉梨愁完成签到,获得积分10
9秒前
10秒前
自觉思萱发布了新的文献求助10
10秒前
Isaiah发布了新的文献求助10
10秒前
10秒前
Vegetable_Dog发布了新的文献求助10
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106