已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Latent motives guide structure learning during adaptive social choice

不可见的 杠杆(统计) 社会心理学 困境 计算机科学 心理学 认知 社会认知 社会学习 人工智能 认知心理学 认识论 教育学 哲学 神经科学
作者
Jeroen van Baar,Matthew R. Nassar,Wenning Deng,Oriel FeldmanHall
标识
DOI:10.1101/2020.06.06.137893
摘要

Abstract Predicting the behavior of others is an essential part of human cognition that enables strategic social behavior (e.g., cooperation), and is impaired in multiple clinical populations. Despite its ubiquity, social prediction poses a generalization problem that remains poorly understood: We can neither assume that others will simply repeat their past behavior in new settings, nor that their future actions are entirely unrelated to the past. Here we demonstrate that humans solve this challenge using a structure learning mechanism that uncovers other people’s latent, unobservable motives, such as greed and risk aversion. In three studies, participants were tasked with predicting the decisions of another player in multiple unique economic games such as the Prisoner’s Dilemma. Participants achieved accurate social prediction by learning the hidden motivational structure underlying the player’s actions to cooperate or defect (e.g., that greed led to defecting in some cases but cooperation in others). This motive-based abstraction enabled participants to attend to information diagnostic of the player’s next move and disregard irrelevant contextual cues. Moreover, participants who successfully learned another’s motives were more strategic in a subsequent competitive interaction with that player, reflecting that accurate social structure learning can lead to more optimal social behaviors. These findings demonstrate that advantageous social behavior hinges on parsimonious and generalizable mental models that leverage others’ latent intentions. Significance statement A hallmark of human cognition is being able to predict the behavior of others. How do we achieve social prediction given that we routinely encounter others in a dizzying array of social situations? We find people achieve accurate social prediction by inferring another’s hidden motives—motives that do not necessarily have a one-to-one correspondence with observable behaviors. Participants were able to infer another’s motives using a structure learning mechanism that enabled generalization. Individuals used what they learned about others in one setting to predict their actions in an entirely new setting. This cognitive process can explain a wealth of social behaviors, ranging from strategic economic decisions to stereotyping and racial bias.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PubMed556发布了新的文献求助10
刚刚
刚刚
29发布了新的文献求助10
1秒前
ofa完成签到,获得积分10
3秒前
3秒前
彩色的友容完成签到 ,获得积分10
4秒前
4秒前
善学以致用应助PubMed556采纳,获得10
5秒前
5秒前
6秒前
干净巧荷关注了科研通微信公众号
6秒前
123完成签到,获得积分10
6秒前
why完成签到,获得积分10
6秒前
tleeny发布了新的文献求助10
8秒前
ofa发布了新的文献求助10
8秒前
9秒前
求助人完成签到 ,获得积分10
9秒前
明理薯片发布了新的文献求助10
9秒前
10秒前
完美世界应助xxdn采纳,获得10
10秒前
香饽饽发布了新的文献求助10
10秒前
dougao完成签到,获得积分10
10秒前
云笙完成签到 ,获得积分10
11秒前
李雨欣完成签到,获得积分10
12秒前
共享精神应助皮代谷采纳,获得10
13秒前
香蕉觅云应助tleeny采纳,获得10
14秒前
15秒前
在水一方应助勤恳的妙旋采纳,获得30
16秒前
mm完成签到 ,获得积分10
16秒前
Hum6le完成签到,获得积分10
16秒前
脑洞疼应助小明采纳,获得10
19秒前
脑洞疼应助abcd采纳,获得10
20秒前
云笙关注了科研通微信公众号
20秒前
希望天下0贩的0应助zyyyyyy采纳,获得10
20秒前
堇瓜发布了新的文献求助10
21秒前
彭于晏应助体贴茗采纳,获得10
21秒前
shawn完成签到 ,获得积分10
23秒前
CipherSage应助无情的宛儿采纳,获得10
24秒前
24秒前
舒服的水壶完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771589
求助须知:如何正确求助?哪些是违规求助? 5592681
关于积分的说明 15427933
捐赠科研通 4904901
什么是DOI,文献DOI怎么找? 2639075
邀请新用户注册赠送积分活动 1586878
关于科研通互助平台的介绍 1541879