亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Latent motives guide structure learning during adaptive social choice

不可见的 杠杆(统计) 社会心理学 困境 计算机科学 心理学 认知 社会认知 社会学习 人工智能 认知心理学 认识论 教育学 哲学 神经科学
作者
Jeroen van Baar,Matthew R. Nassar,Wenning Deng,Oriel FeldmanHall
标识
DOI:10.1101/2020.06.06.137893
摘要

Abstract Predicting the behavior of others is an essential part of human cognition that enables strategic social behavior (e.g., cooperation), and is impaired in multiple clinical populations. Despite its ubiquity, social prediction poses a generalization problem that remains poorly understood: We can neither assume that others will simply repeat their past behavior in new settings, nor that their future actions are entirely unrelated to the past. Here we demonstrate that humans solve this challenge using a structure learning mechanism that uncovers other people’s latent, unobservable motives, such as greed and risk aversion. In three studies, participants were tasked with predicting the decisions of another player in multiple unique economic games such as the Prisoner’s Dilemma. Participants achieved accurate social prediction by learning the hidden motivational structure underlying the player’s actions to cooperate or defect (e.g., that greed led to defecting in some cases but cooperation in others). This motive-based abstraction enabled participants to attend to information diagnostic of the player’s next move and disregard irrelevant contextual cues. Moreover, participants who successfully learned another’s motives were more strategic in a subsequent competitive interaction with that player, reflecting that accurate social structure learning can lead to more optimal social behaviors. These findings demonstrate that advantageous social behavior hinges on parsimonious and generalizable mental models that leverage others’ latent intentions. Significance statement A hallmark of human cognition is being able to predict the behavior of others. How do we achieve social prediction given that we routinely encounter others in a dizzying array of social situations? We find people achieve accurate social prediction by inferring another’s hidden motives—motives that do not necessarily have a one-to-one correspondence with observable behaviors. Participants were able to infer another’s motives using a structure learning mechanism that enabled generalization. Individuals used what they learned about others in one setting to predict their actions in an entirely new setting. This cognitive process can explain a wealth of social behaviors, ranging from strategic economic decisions to stereotyping and racial bias.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cc完成签到 ,获得积分10
2秒前
5秒前
一一一多完成签到 ,获得积分10
8秒前
善学以致用应助成太采纳,获得10
12秒前
13秒前
弦和完成签到,获得积分10
13秒前
群山完成签到 ,获得积分10
15秒前
乐乐发布了新的文献求助10
18秒前
强强完成签到 ,获得积分10
18秒前
22秒前
DocM完成签到 ,获得积分10
23秒前
乐乐完成签到,获得积分20
24秒前
成太发布了新的文献求助10
28秒前
30秒前
JL完成签到,获得积分10
31秒前
32秒前
GingerF应助ccc采纳,获得200
32秒前
小宝贝啥也不懂应助乐乐采纳,获得10
33秒前
wyx发布了新的文献求助10
35秒前
Ava应助野生菜狗采纳,获得30
35秒前
Luffy发布了新的文献求助10
35秒前
活泼的夏旋完成签到 ,获得积分10
36秒前
坚定背包完成签到,获得积分10
37秒前
nove999完成签到 ,获得积分10
39秒前
呆萌念云完成签到 ,获得积分10
40秒前
所所应助林钰浩采纳,获得10
40秒前
科研通AI6应助absb采纳,获得10
44秒前
科研通AI6应助absb采纳,获得10
44秒前
岚12完成签到 ,获得积分10
44秒前
Hello应助absb采纳,获得10
44秒前
科研通AI6应助absb采纳,获得10
44秒前
科研通AI6应助absb采纳,获得10
44秒前
44秒前
45秒前
平淡如天完成签到,获得积分10
46秒前
zzy完成签到 ,获得积分10
50秒前
野生菜狗发布了新的文献求助30
51秒前
传奇3应助absb采纳,获得10
52秒前
汉堡包应助absb采纳,获得10
52秒前
上官若男应助absb采纳,获得10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356425
求助须知:如何正确求助?哪些是违规求助? 4488220
关于积分的说明 13971856
捐赠科研通 4389076
什么是DOI,文献DOI怎么找? 2411395
邀请新用户注册赠送积分活动 1403924
关于科研通互助平台的介绍 1377828