清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Latent motives guide structure learning during adaptive social choice

不可见的 杠杆(统计) 社会心理学 困境 计算机科学 心理学 认知 社会认知 社会学习 人工智能 认知心理学 认识论 教育学 哲学 神经科学
作者
Jeroen van Baar,Matthew R. Nassar,Wenning Deng,Oriel FeldmanHall
标识
DOI:10.1101/2020.06.06.137893
摘要

Abstract Predicting the behavior of others is an essential part of human cognition that enables strategic social behavior (e.g., cooperation), and is impaired in multiple clinical populations. Despite its ubiquity, social prediction poses a generalization problem that remains poorly understood: We can neither assume that others will simply repeat their past behavior in new settings, nor that their future actions are entirely unrelated to the past. Here we demonstrate that humans solve this challenge using a structure learning mechanism that uncovers other people’s latent, unobservable motives, such as greed and risk aversion. In three studies, participants were tasked with predicting the decisions of another player in multiple unique economic games such as the Prisoner’s Dilemma. Participants achieved accurate social prediction by learning the hidden motivational structure underlying the player’s actions to cooperate or defect (e.g., that greed led to defecting in some cases but cooperation in others). This motive-based abstraction enabled participants to attend to information diagnostic of the player’s next move and disregard irrelevant contextual cues. Moreover, participants who successfully learned another’s motives were more strategic in a subsequent competitive interaction with that player, reflecting that accurate social structure learning can lead to more optimal social behaviors. These findings demonstrate that advantageous social behavior hinges on parsimonious and generalizable mental models that leverage others’ latent intentions. Significance statement A hallmark of human cognition is being able to predict the behavior of others. How do we achieve social prediction given that we routinely encounter others in a dizzying array of social situations? We find people achieve accurate social prediction by inferring another’s hidden motives—motives that do not necessarily have a one-to-one correspondence with observable behaviors. Participants were able to infer another’s motives using a structure learning mechanism that enabled generalization. Individuals used what they learned about others in one setting to predict their actions in an entirely new setting. This cognitive process can explain a wealth of social behaviors, ranging from strategic economic decisions to stereotyping and racial bias.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_nxw2xL完成签到,获得积分10
9秒前
muriel完成签到,获得积分10
15秒前
紫熊发布了新的文献求助10
18秒前
cy0824完成签到 ,获得积分10
28秒前
woxinyouyou完成签到,获得积分0
59秒前
1分钟前
1分钟前
1分钟前
就是我发布了新的文献求助10
1分钟前
liuzhigang完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
爱静静举报孔明不在空城求助涉嫌违规
2分钟前
善学以致用应助无限语海采纳,获得10
3分钟前
3分钟前
Tttttttt完成签到,获得积分10
4分钟前
fighting发布了新的文献求助10
4分钟前
就是我完成签到,获得积分10
4分钟前
淡淡醉波wuliao完成签到 ,获得积分10
4分钟前
5分钟前
无限语海发布了新的文献求助10
5分钟前
5分钟前
无限语海完成签到,获得积分10
5分钟前
6分钟前
春日迟迟2012完成签到 ,获得积分10
6分钟前
7分钟前
7分钟前
紫熊发布了新的文献求助10
7分钟前
7分钟前
8分钟前
紫熊完成签到,获得积分10
8分钟前
Malmever完成签到,获得积分10
8分钟前
8分钟前
9分钟前
方白秋完成签到,获得积分10
9分钟前
lbl发布了新的文献求助10
9分钟前
Richard完成签到 ,获得积分10
9分钟前
小二郎应助lbl采纳,获得10
9分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150617
求助须知:如何正确求助?哪些是违规求助? 2802025
关于积分的说明 7846089
捐赠科研通 2459372
什么是DOI,文献DOI怎么找? 1309219
科研通“疑难数据库(出版商)”最低求助积分说明 628708
版权声明 601757