QSAR model for predicting neuraminidase inhibitors of influenza A viruses (H1N1) based on adaptive grasshopper optimization algorithm

数量结构-活动关系 适用范围 特征选择 计算机科学 算法 机器学习 人工智能 数学
作者
Zakariya Yahya Algamal,M.K. Qasim,Muhammad Hisyam Lee,Haithem Taha Mohammad Ali
出处
期刊:Sar and Qsar in Environmental Research [Taylor & Francis]
卷期号:31 (11): 803-814 被引量:18
标识
DOI:10.1080/1062936x.2020.1818616
摘要

High-dimensionality is one of the major problems which affect the quality of the quantitative structure-activity relationship (QSAR) modelling. Obtaining a reliable QSAR model with few descriptors is an essential procedure in chemometrics. The binary grasshopper optimization algorithm (BGOA) is a new meta-heuristic optimization algorithm, which has been used successfully to perform feature selection. In this paper, four new transfer functions were adapted to improve the exploration and exploitation capability of the BGOA in QSAR modelling of influenza A viruses (H1N1). The QSAR model with these new quadratic transfer functions was internally and externally validated based on MSEtrain, Y-randomization test, MSEtest, and the applicability domain (AD). The validation results indicate that the model is robust and not due to chance correlation. In addition, the results indicate that the descriptor selection and prediction performance of the QSAR model for training dataset outperform the other S-shaped and V-shaped transfer functions. QSAR model using quadratic transfer function shows the lowest MSEtrain. For the test dataset, proposed QSAR model shows lower value of MSEtest compared with the other methods, indicating its higher predictive ability. In conclusion, the results reveal that the proposed QSAR model is an efficient approach for modelling high-dimensional QSAR models and it is useful for the estimation of IC50 values of neuraminidase inhibitors that have not been experimentally tested.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Simonking发布了新的文献求助10
1秒前
1秒前
隐形曼青应助云海老采纳,获得10
2秒前
wfy发布了新的文献求助10
3秒前
mwm完成签到 ,获得积分10
3秒前
宇心完成签到,获得积分10
3秒前
言亦云发布了新的文献求助10
3秒前
edsenone发布了新的文献求助30
5秒前
zcy完成签到,获得积分10
5秒前
Li完成签到,获得积分10
5秒前
Sky完成签到,获得积分10
6秒前
7秒前
孤独阑香发布了新的文献求助10
7秒前
kk应助赫连紫采纳,获得10
7秒前
任志政完成签到 ,获得积分10
8秒前
8秒前
研友_LMyj0L发布了新的文献求助10
12秒前
可爱飞荷发布了新的文献求助10
12秒前
抱小熊睡觉完成签到,获得积分10
12秒前
13秒前
15秒前
霍旭芳完成签到 ,获得积分10
15秒前
深情安青应助如意小丸子采纳,获得10
16秒前
16秒前
16秒前
16秒前
17秒前
18秒前
19秒前
孤独阑香完成签到,获得积分10
19秒前
酷波er应助小老虎Milly采纳,获得10
20秒前
听风轻语发布了新的文献求助10
21秒前
李健的小迷弟应助luckykk采纳,获得10
21秒前
立冏商完成签到,获得积分10
21秒前
zzz完成签到,获得积分10
22秒前
可爱的函函应助JG采纳,获得10
22秒前
云海老发布了新的文献求助10
22秒前
坤坤完成签到,获得积分10
22秒前
yoo发布了新的文献求助10
22秒前
bsyaa发布了新的文献求助10
23秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010435
求助须知:如何正确求助?哪些是违规求助? 3550258
关于积分的说明 11305330
捐赠科研通 3284688
什么是DOI,文献DOI怎么找? 1810836
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811470