石墨烯
化学物理
分子间力
堆积
静电学
石墨烯
非共价相互作用
位阻效应
化学
超分子化学
伦敦分散部队
相互作用能
范德瓦尔斯力
材料科学
纳米技术
计算化学
结晶学
分子
晶体结构
立体化学
有机化学
氢键
物理化学
作者
Kevin Carter-Fenk,John M. Herbert
摘要
The nature of π-π interactions has long been debated. The term "π-stacking" is considered by some to be a misnomer, in part because overlapping π-electron densities are thought to incur steric repulsion, and the physical origins of the widely-encountered "slip-stacked" motif have variously been attributed to either sterics or electrostatics, in competition with dispersion. Here, we use quantum-mechanical energy decomposition analysis to investigate π-π interactions in supramolecular complexes of polycyclic aromatic hydrocarbons, ranging in size up to realistic models of graphene, and for comparison we perform the same analysis on stacked complexes of polycyclic saturated hydrocarbons, which are cyclohexane-based analogues of graphane. Our results help to explain the short-range structure of liquid hydrocarbons that is inferred from neutron scattering, trends in melting-point data, the interlayer separation of graphene sheets, and finally band gaps and observation of molecular plasmons in graphene nanoribbons. Analysis of intermolecular forces demonstrates that aromatic π-π interactions constitute a unique and fundamentally quantum-mechanical form of non-bonded interaction. Not only do stacked π-π architectures enhance dispersion, but quadrupolar electrostatic interactions that may be repulsive at long range are rendered attractive at the intermolecular distances that characterize π-stacking, as a result of charge penetration effects. The planar geometries of aromatic sp2 carbon networks lead to attractive interactions that are "served up on a molecular pizza peel", and adoption of slip-stacked geometries minimizes steric (rather than electrostatic) repulsion. The slip-stacked motif therefore emerges not as a defect induced by electrostatic repulsion but rather as a natural outcome of a conformational landscape that is dominated by van der Waals interactions (dispersion plus Pauli repulsion), and is therefore fundamentally quantum-mechanical in its origins. This reinterpretation of the forces responsible for π-stacking has important implications for the manner in which non-bonded interactions are modeled using classical force fields, and for rationalizing the prevalence of the slip-stacked π-π motif in protein crystal structures.
科研通智能强力驱动
Strongly Powered by AbleSci AI