Multi-dimensional characterization and identification of sterols in untargeted LC-MS analysis using all ion fragmentation technology

化学 甾醇 表征(材料科学) 色谱法 生物材料 植物甾醇 计算生物学 碎片(计算) 生物化学 鉴定(生物学) 纳米技术 生物系统 胆固醇 生物 植物 材料科学 生态学
作者
Jiaqian Qiu,Tongzhou Li,Zheng‐Jiang Zhu
出处
期刊:Analytica Chimica Acta [Elsevier BV]
卷期号:1142: 108-117 被引量:12
标识
DOI:10.1016/j.aca.2020.10.058
摘要

Sterols are an important type of lipids, and play many important roles in physiological and pathological processes. However, comprehensive analysis of sterols especially identification of unknown sterols is challenging. In this work, LC-MS with all ion fragmentation (AIF) technology was developed for untargeted analysis of sterols in biological samples. AIF technology provided holistic and multi-dimensional characterization for both knowns and unknowns sterols, including accurate m/z, isotope pattern, retention time (RT), and co-eluted peak profiles between MS1 and MS2 ions in one analysis. We further developed an analysis strategy by integrating the multi-dimensional properties to support unambiguous identification of sterols, including distinguishing sterol isomers. The developed strategy enabled to identify a total of 23 sterols in mouse samples, and quantified 19 sterols in mouse liver tissues. More importantly, we demonstrated that AIF based multi-dimensional analysis provided a possibility to identify sterols without chemical standards and facilitated to discover novel compounds with sterol-like structures in biological samples. In summary, we employed the LC-MS based AIF technology to develop multi-dimensional characterization and identification of both known and unknown sterols in complex biological samples. The comprehensive analysis of sterols facilitates to provide molecular insights to many physiological and pathological activities in biology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助科研通管家采纳,获得10
1秒前
xzy998应助科研通管家采纳,获得10
1秒前
chelsea完成签到,获得积分10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
TaoJ应助科研通管家采纳,获得10
1秒前
xzy998应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
yyyyyyyyjt发布了新的文献求助10
3秒前
chenxuuu发布了新的文献求助10
3秒前
砼砼发布了新的文献求助10
3秒前
yuan完成签到,获得积分10
4秒前
xiaokalami发布了新的文献求助10
5秒前
杨雨帆发布了新的文献求助10
6秒前
yuan发布了新的文献求助10
8秒前
9秒前
9秒前
梅倪完成签到,获得积分10
10秒前
华仔应助777采纳,获得10
11秒前
羊羊完成签到 ,获得积分10
11秒前
鱼鱼完成签到 ,获得积分10
12秒前
14秒前
李巧儿发布了新的文献求助10
14秒前
背书强发布了新的文献求助10
16秒前
18秒前
1vvvv发布了新的文献求助10
20秒前
CodeCraft应助文明8采纳,获得10
20秒前
Lucas应助chenxuuu采纳,获得10
21秒前
21秒前
wangzhihui发布了新的文献求助10
21秒前
落后冬云完成签到 ,获得积分10
22秒前
闪闪的星星完成签到,获得积分10
23秒前
23秒前
25秒前
25秒前
26秒前
xiaokalami完成签到,获得积分10
26秒前
古琴残梦完成签到 ,获得积分10
26秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738580
求助须知:如何正确求助?哪些是违规求助? 3281930
关于积分的说明 10027083
捐赠科研通 2998733
什么是DOI,文献DOI怎么找? 1645432
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749967