Multi-dimensional characterization and identification of sterols in untargeted LC-MS analysis using all ion fragmentation technology

化学 甾醇 表征(材料科学) 色谱法 生物材料 植物甾醇 计算生物学 碎片(计算) 生物化学 鉴定(生物学) 纳米技术 生物系统 胆固醇 生物 植物 材料科学 生态学
作者
Jiaqian Qiu,Tongzhou Li,Zheng‐Jiang Zhu
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1142: 108-117 被引量:12
标识
DOI:10.1016/j.aca.2020.10.058
摘要

Sterols are an important type of lipids, and play many important roles in physiological and pathological processes. However, comprehensive analysis of sterols especially identification of unknown sterols is challenging. In this work, LC-MS with all ion fragmentation (AIF) technology was developed for untargeted analysis of sterols in biological samples. AIF technology provided holistic and multi-dimensional characterization for both knowns and unknowns sterols, including accurate m/z, isotope pattern, retention time (RT), and co-eluted peak profiles between MS1 and MS2 ions in one analysis. We further developed an analysis strategy by integrating the multi-dimensional properties to support unambiguous identification of sterols, including distinguishing sterol isomers. The developed strategy enabled to identify a total of 23 sterols in mouse samples, and quantified 19 sterols in mouse liver tissues. More importantly, we demonstrated that AIF based multi-dimensional analysis provided a possibility to identify sterols without chemical standards and facilitated to discover novel compounds with sterol-like structures in biological samples. In summary, we employed the LC-MS based AIF technology to develop multi-dimensional characterization and identification of both known and unknown sterols in complex biological samples. The comprehensive analysis of sterols facilitates to provide molecular insights to many physiological and pathological activities in biology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助小尚要加油采纳,获得10
刚刚
慕青应助zg采纳,获得10
2秒前
崔崔完成签到,获得积分20
3秒前
hailang820316完成签到,获得积分10
3秒前
Patrick完成签到,获得积分10
5秒前
陈开心关注了科研通微信公众号
6秒前
7秒前
8秒前
小蘑菇应助卯一采纳,获得10
8秒前
AaronW完成签到,获得积分10
8秒前
李健应助研友_LwlAgn采纳,获得10
9秒前
科研通AI2S应助研友_ZlPVzZ采纳,获得10
9秒前
陶醉的大白完成签到 ,获得积分10
10秒前
淡淡猎豹发布了新的文献求助10
11秒前
12秒前
12秒前
Ava应助小古采纳,获得10
13秒前
hkh发布了新的文献求助10
13秒前
李李发布了新的文献求助10
13秒前
NexusExplorer应助江姜酱先生采纳,获得10
14秒前
Anni-QQ完成签到,获得积分10
15秒前
小白完成签到,获得积分20
17秒前
kk发布了新的文献求助10
18秒前
中九完成签到 ,获得积分10
18秒前
星辰大海应助xing采纳,获得10
19秒前
孙兆杰发布了新的文献求助20
19秒前
善学以致用应助Hh采纳,获得10
24秒前
24秒前
2333完成签到,获得积分20
26秒前
陈开心发布了新的文献求助20
27秒前
虚幻的又蓝完成签到,获得积分10
28秒前
mingyue应助寒冷平蓝采纳,获得10
29秒前
29秒前
29秒前
29秒前
wuhao0118完成签到,获得积分10
30秒前
31秒前
卯一发布了新的文献求助10
31秒前
gypsi完成签到,获得积分0
31秒前
小白发布了新的文献求助10
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308488
求助须知:如何正确求助?哪些是违规求助? 2941822
关于积分的说明 8506015
捐赠科研通 2616798
什么是DOI,文献DOI怎么找? 1429796
科研通“疑难数据库(出版商)”最低求助积分说明 663919
邀请新用户注册赠送积分活动 649019