清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning for motor imagery EEG-based classification: A review

计算机科学 深度学习 人工智能 卷积神经网络 脑电图 机器学习 过程(计算) 运动表象 脑-机接口 领域(数学) 预处理器 突出 人工神经网络 精神科 操作系统 纯数学 数学 心理学
作者
Ali Al-Saegh,Shefa A. Dawwd,Jassim M. Abdul-Jabbar
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:63: 102172-102172 被引量:265
标识
DOI:10.1016/j.bspc.2020.102172
摘要

The availability of large and varied Electroencephalogram (EEG) datasets, rapidly advances and inventions in deep learning techniques, and highly powerful and diversified computing systems have all permitted to easily analyzing those datasets and discovering vital information within. However, the classification process of EEG signals and discovering vital information should be robust, automatic, and with high accuracy. Motor Imagery (MI) EEG has attracted us due to its significant applications in daily life. This paper attempts to achieve those goals throughout a systematic review of the state-of-the-art studies within this field of research. The process began by intensely surfing the well-known specialized digital libraries and, as a result, 40 related papers were gathered. The papers were scrutinized upon multiple noteworthy technical issues, among them deep neural network architecture, input formulation, number of MI EEG tasks, and frequency range of interest. Deep neural networks build robust and automated systems for the classification of MI EEG recordings by exploiting the whole input data throughout learning salient features. Specifically, convolutional neural networks (CNN) and hybrid-CNN (h-CNN) are the dominant architectures with high performance in comparison to public datasets with other types of architectures. The MI related datasets, input formulation, frequency ranges, and preprocessing and regularization methods were also reviewed. This review gives the required preliminaries in developing MI EEG-based BCI systems. The review process of the published articles in the last five years aims to help in choosing the appropriate deep neural network architecture and other hyperparameters for developing those systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Aria发布了新的文献求助10
8秒前
义气的玉米完成签到 ,获得积分10
12秒前
Aria完成签到,获得积分10
28秒前
Spring完成签到,获得积分10
32秒前
千帆完成签到 ,获得积分10
34秒前
结实的寄柔完成签到,获得积分10
39秒前
爱静静应助科研通管家采纳,获得10
40秒前
back you up应助科研通管家采纳,获得30
41秒前
爱静静应助科研通管家采纳,获得10
41秒前
爱静静应助科研通管家采纳,获得10
41秒前
爱静静应助科研通管家采纳,获得10
41秒前
爱静静应助科研通管家采纳,获得10
41秒前
爱静静应助科研通管家采纳,获得10
41秒前
爱静静应助科研通管家采纳,获得10
41秒前
back you up应助科研通管家采纳,获得30
41秒前
爱静静应助科研通管家采纳,获得10
41秒前
1分钟前
1分钟前
爆米花应助葛力采纳,获得10
1分钟前
雪酪芋泥球完成签到 ,获得积分10
1分钟前
阿巴完成签到 ,获得积分10
2分钟前
2分钟前
FashionBoy应助正在跳舞的猪采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
clairevox应助科研通管家采纳,获得150
2分钟前
back you up应助科研通管家采纳,获得30
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
SH123完成签到 ,获得积分10
2分钟前
3分钟前
阿巴发布了新的文献求助10
3分钟前
阿白完成签到 ,获得积分10
3分钟前
白天亮发布了新的文献求助10
3分钟前
俊俊完成签到 ,获得积分10
4分钟前
科研通AI5应助亚亚采纳,获得10
4分钟前
4分钟前
文献搬运工完成签到 ,获得积分10
4分钟前
白天亮完成签到,获得积分10
4分钟前
葛力发布了新的文献求助10
4分钟前
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671283
求助须知:如何正确求助?哪些是违规求助? 3228146
关于积分的说明 9778630
捐赠科研通 2938406
什么是DOI,文献DOI怎么找? 1610009
邀请新用户注册赠送积分活动 760503
科研通“疑难数据库(出版商)”最低求助积分说明 736003