Interleaved group convolution network for hyperspectral image classification

卷积(计算机科学) 冗余(工程) 高光谱成像 计算 卷积神经网络 计算机科学 模式识别(心理学) 人工智能 算法 上下文图像分类 数学 人工神经网络 图像(数学) 操作系统
作者
Mingrui Su,Yu Liu,Lu Liu,Yuanxi Peng,Tian Jiang
标识
DOI:10.1117/12.2549150
摘要

Researches have shown that using convolution neural network (CNN) on spatial-spectral domain can improve the performance of hyperspectral image (HSI) classification in recently years. However, due to the existence of spectral redundancy and the high dimensional kernels used in 3D-CNN, the HSI classification models are often heavy with a huge number of parameters and high computation complexity. Motivated by the lightweight model, this paper introduced a modular convolution structure named three-dimensional interleaved group convolution (3D-IGC). This structure contains two successive group convolutions with a channel shuffle operation between them. First group convolution extracts feature on spatial-spectral domain. Then the channel shuffle enables cross-group information interchange. After this, the second group convolution perform the point-wise convolution. We proved that an IGC is wider than a normal convolution in most cases by inferred formula. The empirical results demonstrate that the increment of width in 3D-IGC model is beneficial to HSI classification with the computation complexity preserved, especially when the model has fewer parameters. Compared with the normal convolution, the 3D-IGC can largely reduce the redundancy of convolution filters in channel domain, which greatly decreases the number of parameters and the computation cost without losing classification accuracy. We also considered the effects of the 3D-IGC on deep neural networks, therefore we used the 3D-IGC to modify the residual unit and get a lightweight model compared with ResNets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yfy发布了新的文献求助10
刚刚
江江发布了新的文献求助10
1秒前
1秒前
ll应助白日焰火采纳,获得10
1秒前
ll应助白日焰火采纳,获得10
1秒前
ll应助白日焰火采纳,获得10
2秒前
tianmeiling完成签到 ,获得积分10
2秒前
3秒前
9977完成签到,获得积分10
3秒前
flasher22发布了新的文献求助10
4秒前
sdshi完成签到,获得积分10
5秒前
日月山河永在完成签到,获得积分10
5秒前
11111发布了新的文献求助10
6秒前
武坤发布了新的文献求助10
7秒前
7秒前
lxy完成签到,获得积分10
7秒前
zzzz发布了新的文献求助10
7秒前
7秒前
8秒前
11秒前
sdshi发布了新的文献求助10
11秒前
桐桐应助222采纳,获得10
12秒前
我是老大应助要减肥采纳,获得10
12秒前
xiaomaxia发布了新的文献求助10
12秒前
一一一完成签到,获得积分10
12秒前
WY完成签到 ,获得积分10
12秒前
12秒前
13秒前
Owen应助高贵紫丝采纳,获得10
14秒前
所所应助高贵紫丝采纳,获得10
15秒前
科研通AI5应助高贵紫丝采纳,获得10
15秒前
科研通AI5应助高贵紫丝采纳,获得10
15秒前
科研通AI5应助高贵紫丝采纳,获得10
15秒前
华仔应助高贵紫丝采纳,获得10
15秒前
15秒前
mmmmm完成签到,获得积分10
15秒前
11111完成签到,获得积分10
16秒前
16秒前
科研通AI5应助饼藏采纳,获得10
17秒前
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967544
求助须知:如何正确求助?哪些是违规求助? 3512763
关于积分的说明 11165008
捐赠科研通 3247759
什么是DOI,文献DOI怎么找? 1794027
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804528