谷氨酸棒杆菌
代谢工程
生物传感器
生物合成
异亮氨酸
拉伤
生物化学
化学
效价
诱导剂
维吉尼亚霉素
基因
生物
氨基酸
抗生素
亮氨酸
遗传学
解剖
抗体
作者
Shuyu Tan,Feng Shi,Haiyan Liu,Xinping Yu,Shuyu Wei,Zhengyu Fan,Yongfu Li
标识
DOI:10.1021/acssynbio.0c00127
摘要
4-Hydroxyisoleucine (4-HIL), a promising drug for treating diabetes, can be synthesized from the self-produced l-isoleucine (Ile) by expressing the Ile dioxygenase gene ido in Corynebacterium glutamicum. However, the requirement of three substrates, Ile, α-ketoglutarate (α-KG), and O2, makes such de novo biosynthesis difficult to be fulfilled effectively under static engineering conditions. In this study, dynamic control of 4-HIL biosynthesis by the Ile biosensor Lrp-PbrnFE was researched. The native PbrnFE promoter of natural Ile biosensor was still weak even under Ile induction. Through tetA dual genetic selection, several modified stronger PbrnFEN promoters were obtained from the synthetic library of the Ile biosensor. Dynamic regulation of ido expression by modified Ile biosensors increased the 4-HIL titer from 24.7 mM to 28.9–74.4 mM. The best strain ST04 produced even a little more 4-HIL than the static strain SN02 overexpressing ido by the strong PtacM promoter (69.7 mM). Further dynamic modulation of α-KG supply in ST04 by expressing different PbrnFEN-controlled odhI decreased the 4-HIL production but increased the l-glutamate or Ile accumulation. However, synergistic modulation of α-KG supply and O2 supply in ST04 by different combinations of PbrnFEN-odhI and PbrnFEN-vgb improved the 4-HIL production significantly, and the highest titer (135.3 mM) was obtained in ST17 strain regulating all the three genes by PbrnFE7. This titer was higher than those of all the static metabolic engineered C. glutamicum strains ever constructed. Therefore, dynamic regulation by modified Ile biosensor is a predominant strategy for enhancing 4-HIL de novo biosynthesis in C. glutamicum.
科研通智能强力驱动
Strongly Powered by AbleSci AI