Phenoxy herbicides are widely applied in agricultural weeding. The determination of herbicides is important in environmental protection, agricultural production, food safety, and public health. In this study, a facile and efficient analytical method was proposed for the trace detection of phenoxy herbicides in soil, cucumber, and tap water samples by coupling pipette tip solid phase extraction (PT-SPE) with high performance liquid chromatography. UiO-66-funtionalized cotton (Cotton@UiO-66) was packed into pipette-tip as sorbent to fabricate extraction device. The modification of UiO-66 on cotton fiber was confirmed using scanning electron microscope, Fourier transform infrared spectroscopy, and X-ray diffraction. The main factors affecting the adsorption of Cotton@UiO-66 for four phenoxy herbicides were evaluated by response surface methodology in detail. Under optimized conditions, Cotton@UiO-66 displayed excellent properties in the extraction of phenoxy herbicides with good peak shape. Linear ranges of 4-chlorophenoxyacetic acid, dicamba, 2,4-dichlorophenoxyacetic acid, and 2-(2,4-dichlorophenoxy) propionic acid were 1.4-72 μg/L, 5.6-280 μg/L, 2.8-140 μg/L and 3.2-160 μg/L (RSDs < 6.3%), respectively. The recoveries were between 83.3 and 106.8% with RSDs <6.7%, with detection limits ranging from 0.1 μg/L to 0.3 μg/L. The results show that Cotton@UiO-66 in PT-SPE is an effective method for monitoring phenoxy herbicides in complex samples.