生物炭
化学
针铁矿
催化作用
激进的
降级(电信)
核化学
羟基自由基
过氧化氢
无机化学
有机化学
吸附
热解
电信
计算机科学
作者
Guangfei Liu,Yuanyuan Zhang,Huali Yu,Ronghua Jin,Jiti Zhou
标识
DOI:10.1016/j.jhazmat.2020.122783
摘要
While carbon materials have been well studied to stimulate the homogeneous Fenton-like processes, little was known about their impacts on iron mineral-catalyzed heterogeneous Fenton-like reactions. Here, it was found that biochar prepared at 300 °C or 600 °C (BC300 or BC600) greatly stimulated the degradation of ofloxacin (OFX) in a goethite (Gt)-mediated Fenton-like system. In 4 h, while only 38.4 % and 48.4 % OFX were removed in Gt/H2O2 and BC600/H2O2 systems, the removal efficiency reached over 94.0 % in Gt/BC600/H2O2 system. And the pseudo-first-order rate constant of Gt/H2O2, BC600/H2O2 and Gt/BC600/H2O2 systems were 0.12, 0.16 and 0.72 h−1, respectively, indicating the occurrence of synergistically catalytic degradation. •OH was identified as the major oxidant. Both the •OH yield and the H2O2 utilization efficiency of Gt/BC600/H2O2 system were higher than those of Gt/H2O2 and BC600/H2O2 systems. BC600 showed better stimulation effects than BC300. The persistent free radicals (PFRs) of BC could activate H2O2 and partly contribute to •OH production in the Gt/BC/H2O2 system. While BC could not directly reduce Fe(III) in Gt, it improved the cycling of Fe(III)/Fe(II) through complexing Fe(III) with its carboxyl group. Potential pathways were proposed for OFX degradation in the Gt/BC/H2O2 system.
科研通智能强力驱动
Strongly Powered by AbleSci AI