Multi-step medical image segmentation based on reinforcement learning

计算机科学 人工智能 分割 图像分割 强化学习 图像(数学) 计算机视觉 模式识别(心理学) 机器学习 计算智能 深度学习 过程(计算)
作者
Zhiqiang Tian,Xiangyu Si,Yaoyue Zheng,Zhang Chen,Xiaojian Li
出处
期刊:Journal of Ambient Intelligence and Humanized Computing [Springer Nature]
卷期号:: 1-12 被引量:9
标识
DOI:10.1007/s12652-020-01905-3
摘要

Image segmentation technology has made a remarkable effect in medical image analysis and processing, which is used to help physicians get a more accurate diagnosis. Manual segmentation of the medical image requires a lot of effort by professionals, which is also a subjective task. Therefore, developing an advanced segmentation method is an essential demand. We propose an end-to-end segmentation method for medical images, which mimics physicians delineating a region of interest (ROI) on the medical image in a multi-step manner. This multi-step operation improves the performance from a coarse result to a fine result progressively. In this paper, the segmentation process is formulated as a Markov decision process and solved by a deep reinforcement learning (DRL) algorithm, which trains an agent for segmenting ROI in images. The agent performs a serial action to delineate the ROI. We define the action as a set of continuous parameters. Then, we adopted a DRL algorithm called deep deterministic policy gradient to learn the segmentation model in continuous action space. The experimental result shows that the proposed method has 7.24% improved to the state-of-the-art method on three prostate MR data sets and has 3.52% improved on one retinal fundus image data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
余余余余完成签到,获得积分20
刚刚
yyyy完成签到,获得积分10
1秒前
1秒前
Ting222发布了新的文献求助10
2秒前
余余余余发布了新的文献求助10
4秒前
汤飞柏发布了新的文献求助10
5秒前
儒雅的不愁完成签到,获得积分10
9秒前
毛豆应助l玖采纳,获得10
10秒前
充电宝应助24采纳,获得10
11秒前
打打应助感性的初兰采纳,获得10
11秒前
13秒前
重要的向露完成签到,获得积分20
13秒前
所所应助韩永利采纳,获得10
16秒前
17秒前
CipherSage应助专注凌文采纳,获得10
17秒前
17秒前
18秒前
19秒前
英勇代荷完成签到,获得积分10
19秒前
20秒前
21秒前
21秒前
lwx发布了新的文献求助10
22秒前
LiBo发布了新的文献求助10
22秒前
22秒前
jwj发布了新的文献求助10
23秒前
CodeCraft应助醉熏的凝莲采纳,获得10
23秒前
毓毓发布了新的文献求助10
24秒前
CodeCraft应助伍齊采纳,获得10
25秒前
25秒前
傲娇小笼包关注了科研通微信公众号
26秒前
26秒前
27秒前
典雅的俊驰应助鱼咬羊采纳,获得30
27秒前
Murphy完成签到 ,获得积分10
27秒前
Ren发布了新的文献求助10
28秒前
lyy完成签到 ,获得积分10
29秒前
天天快乐应助jwj采纳,获得10
31秒前
彭于晏应助飞飞飞采纳,获得10
31秒前
Mewo发布了新的文献求助10
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309599
求助须知:如何正确求助?哪些是违规求助? 2942884
关于积分的说明 8511456
捐赠科研通 2617981
什么是DOI,文献DOI怎么找? 1430741
科研通“疑难数据库(出版商)”最低求助积分说明 664212
邀请新用户注册赠送积分活动 649424