Value of a Machine Learning Approach for Predicting Clinical Outcomes in Young Patients With Hypertension

医学 比例危险模型 弗雷明翰风险评分 心房扑动 血运重建 心房颤动 心肌梗塞 冲程(发动机) 内科学 心脏病学 疾病 机械工程 工程类
作者
Xueyi Wu,Xinglong Yuan,Wei Wang,Kai Liu,Ying Qin,Xiaolu Sun,Wenjun Ma,Yubao Zou,Huimin Zhang,Xianliang Zhou,Haiying Wu,Xiongjing Jiang,Jun Cai,Wenbing Chang,Shenghan Zhou,Lei Song
出处
期刊:Hypertension [Ovid Technologies (Wolters Kluwer)]
卷期号:75 (5): 1271-1278 被引量:45
标识
DOI:10.1161/hypertensionaha.119.13404
摘要

Risk stratification of young patients with hypertension remains challenging. Generally, machine learning (ML) is considered a promising alternative to traditional methods for clinical predictions because it is capable of processing large amounts of complex data. We, therefore, explored the feasibility of an ML approach for predicting outcomes in young patients with hypertension and compared its performance with that of approaches now commonly used in clinical practice. Baseline clinical data and a composite end point—comprising all-cause death, acute myocardial infarction, coronary artery revascularization, new-onset heart failure, new-onset atrial fibrillation/atrial flutter, sustained ventricular tachycardia/ventricular fibrillation, peripheral artery revascularization, new-onset stroke, end-stage renal disease—were evaluated in 508 young patients with hypertension (30.83±6.17 years) who had been treated at a tertiary hospital. Construction of the ML model, which consisted of recursive feature elimination, extreme gradient boosting, and 10-fold cross-validation, was performed at the 33-month follow-up evaluation, and the model’s performance was compared with that of the Cox regression and recalibrated Framingham Risk Score models. An 11-variable combination was considered most valuable for predicting outcomes using the ML approach. The C statistic for identifying patients with composite end points was 0.757 (95% CI, 0.660–0.854) for the ML model, whereas for Cox regression model and the recalibrated Framingham Risk Score model it was 0.723 (95% CI, 0.636–0.810) and 0.529 (95% CI, 0.403–0.655). The ML approach was comparable with Cox regression for determining the clinical prognosis of young patients with hypertension and was better than that of the recalibrated Framingham Risk Score model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任性蘑菇完成签到 ,获得积分10
刚刚
清爽冰露完成签到,获得积分10
刚刚
科研通AI5应助LW采纳,获得10
1秒前
小美酱发布了新的文献求助10
1秒前
占万声发布了新的文献求助50
1秒前
1秒前
火星上云朵完成签到 ,获得积分10
1秒前
我是老大应助77采纳,获得10
2秒前
Finger发布了新的文献求助30
3秒前
情怀应助聪明的行云采纳,获得10
4秒前
思源应助YUMI采纳,获得10
4秒前
Coady完成签到 ,获得积分10
4秒前
壮观梦之完成签到,获得积分10
4秒前
初七发布了新的文献求助30
4秒前
5秒前
小z发布了新的文献求助10
5秒前
6秒前
恩恩完成签到,获得积分10
7秒前
小聋包完成签到,获得积分10
7秒前
7秒前
田様应助yumeng采纳,获得10
8秒前
CodeCraft应助胡同学采纳,获得10
8秒前
9秒前
乐乐应助天上人间采纳,获得10
9秒前
壮观梦之发布了新的文献求助10
9秒前
Gmute完成签到,获得积分20
9秒前
10秒前
10秒前
11秒前
义气的夏寒完成签到,获得积分10
11秒前
jouholly完成签到,获得积分10
11秒前
11秒前
hoshi完成签到 ,获得积分10
12秒前
ayan完成签到,获得积分10
13秒前
香蕉发夹完成签到,获得积分10
13秒前
风华完成签到,获得积分10
13秒前
张嘉伟发布了新的文献求助10
13秒前
Finger发布了新的文献求助30
14秒前
赘婿应助123采纳,获得10
14秒前
Phillar完成签到,获得积分10
14秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479035
求助须知:如何正确求助?哪些是违规求助? 3069819
关于积分的说明 9115453
捐赠科研通 2761613
什么是DOI,文献DOI怎么找? 1515399
邀请新用户注册赠送积分活动 700890
科研通“疑难数据库(出版商)”最低求助积分说明 699911