Value of a Machine Learning Approach for Predicting Clinical Outcomes in Young Patients With Hypertension

医学 比例危险模型 弗雷明翰风险评分 心房扑动 血运重建 心房颤动 心肌梗塞 冲程(发动机) 内科学 心脏病学 疾病 机械工程 工程类
作者
Xueyi Wu,Xinglong Yuan,Wei Wang,Kai Liu,Ying Qin,Xiaolu Sun,Wenjun Ma,Yubao Zou,Huimin Zhang,Xianliang Zhou,Haiying Wu,Xiongjing Jiang,Jun Cai,Wenbing Chang,Shenghan Zhou,Lei Song
出处
期刊:Hypertension [Lippincott Williams & Wilkins]
卷期号:75 (5): 1271-1278 被引量:45
标识
DOI:10.1161/hypertensionaha.119.13404
摘要

Risk stratification of young patients with hypertension remains challenging. Generally, machine learning (ML) is considered a promising alternative to traditional methods for clinical predictions because it is capable of processing large amounts of complex data. We, therefore, explored the feasibility of an ML approach for predicting outcomes in young patients with hypertension and compared its performance with that of approaches now commonly used in clinical practice. Baseline clinical data and a composite end point—comprising all-cause death, acute myocardial infarction, coronary artery revascularization, new-onset heart failure, new-onset atrial fibrillation/atrial flutter, sustained ventricular tachycardia/ventricular fibrillation, peripheral artery revascularization, new-onset stroke, end-stage renal disease—were evaluated in 508 young patients with hypertension (30.83±6.17 years) who had been treated at a tertiary hospital. Construction of the ML model, which consisted of recursive feature elimination, extreme gradient boosting, and 10-fold cross-validation, was performed at the 33-month follow-up evaluation, and the model’s performance was compared with that of the Cox regression and recalibrated Framingham Risk Score models. An 11-variable combination was considered most valuable for predicting outcomes using the ML approach. The C statistic for identifying patients with composite end points was 0.757 (95% CI, 0.660–0.854) for the ML model, whereas for Cox regression model and the recalibrated Framingham Risk Score model it was 0.723 (95% CI, 0.636–0.810) and 0.529 (95% CI, 0.403–0.655). The ML approach was comparable with Cox regression for determining the clinical prognosis of young patients with hypertension and was better than that of the recalibrated Framingham Risk Score model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
董宏杨关注了科研通微信公众号
刚刚
1秒前
瘦瘦白昼发布了新的文献求助10
1秒前
MoodMeed完成签到,获得积分10
1秒前
TL完成签到,获得积分10
2秒前
2秒前
2秒前
无私的芹应助龚正龙采纳,获得10
3秒前
花样发布了新的文献求助10
3秒前
田様应助研友_Z33zkZ采纳,获得50
3秒前
3秒前
甜晞完成签到,获得积分10
3秒前
科研通AI2S应助xiaohe采纳,获得10
4秒前
5秒前
追逐123完成签到 ,获得积分10
7秒前
7秒前
哒哒张发布了新的文献求助30
7秒前
DC发布了新的文献求助10
9秒前
打打应助fangliu采纳,获得10
9秒前
holl完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
翟如风完成签到,获得积分10
10秒前
10秒前
黑木完成签到 ,获得积分10
10秒前
星辰大海应助奥暖将采纳,获得10
10秒前
大个应助infun采纳,获得10
12秒前
小巧的忘幽完成签到,获得积分20
12秒前
Whaoe发布了新的文献求助10
13秒前
13秒前
隐形曼青应助玩命的糖豆采纳,获得10
14秒前
Kirito应助Yuanyuan采纳,获得10
15秒前
15秒前
15秒前
WGOIST完成签到,获得积分10
15秒前
15秒前
烟花应助视野胤采纳,获得10
15秒前
可爱的函函应助yyygc采纳,获得10
16秒前
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952150
求助须知:如何正确求助?哪些是违规求助? 3497551
关于积分的说明 11088037
捐赠科研通 3228178
什么是DOI,文献DOI怎么找? 1784700
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801230