Value of a Machine Learning Approach for Predicting Clinical Outcomes in Young Patients With Hypertension

医学 比例危险模型 弗雷明翰风险评分 心房扑动 血运重建 心房颤动 心肌梗塞 冲程(发动机) 内科学 心脏病学 疾病 机械工程 工程类
作者
Xueyi Wu,Xinglong Yuan,Wei Wang,Kai Liu,Ying Qin,Xiaolu Sun,Wenjun Ma,Yubao Zou,Huimin Zhang,Xianliang Zhou,Haiying Wu,Xiongjing Jiang,Jun Cai,Wenbing Chang,Shenghan Zhou,Lei Song
出处
期刊:Hypertension [Ovid Technologies (Wolters Kluwer)]
卷期号:75 (5): 1271-1278 被引量:45
标识
DOI:10.1161/hypertensionaha.119.13404
摘要

Risk stratification of young patients with hypertension remains challenging. Generally, machine learning (ML) is considered a promising alternative to traditional methods for clinical predictions because it is capable of processing large amounts of complex data. We, therefore, explored the feasibility of an ML approach for predicting outcomes in young patients with hypertension and compared its performance with that of approaches now commonly used in clinical practice. Baseline clinical data and a composite end point—comprising all-cause death, acute myocardial infarction, coronary artery revascularization, new-onset heart failure, new-onset atrial fibrillation/atrial flutter, sustained ventricular tachycardia/ventricular fibrillation, peripheral artery revascularization, new-onset stroke, end-stage renal disease—were evaluated in 508 young patients with hypertension (30.83±6.17 years) who had been treated at a tertiary hospital. Construction of the ML model, which consisted of recursive feature elimination, extreme gradient boosting, and 10-fold cross-validation, was performed at the 33-month follow-up evaluation, and the model’s performance was compared with that of the Cox regression and recalibrated Framingham Risk Score models. An 11-variable combination was considered most valuable for predicting outcomes using the ML approach. The C statistic for identifying patients with composite end points was 0.757 (95% CI, 0.660–0.854) for the ML model, whereas for Cox regression model and the recalibrated Framingham Risk Score model it was 0.723 (95% CI, 0.636–0.810) and 0.529 (95% CI, 0.403–0.655). The ML approach was comparable with Cox regression for determining the clinical prognosis of young patients with hypertension and was better than that of the recalibrated Framingham Risk Score model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
圈圈完成签到 ,获得积分10
1秒前
SXR完成签到,获得积分10
2秒前
三三得九完成签到 ,获得积分10
2秒前
3秒前
木木完成签到,获得积分10
3秒前
ls完成签到,获得积分10
4秒前
吾身无拘完成签到,获得积分10
4秒前
Owen应助sino-ft采纳,获得10
4秒前
薛定谔的猫完成签到 ,获得积分10
5秒前
奋斗的年纪完成签到 ,获得积分10
6秒前
xiao xu完成签到,获得积分10
6秒前
阿超完成签到,获得积分10
6秒前
自转无风完成签到,获得积分10
6秒前
丘比特应助炙热的平灵采纳,获得10
7秒前
冷傲机器猫完成签到,获得积分10
7秒前
六妜完成签到,获得积分10
7秒前
guojingjing发布了新的文献求助10
7秒前
7秒前
大脑袋应助PolarLuo采纳,获得30
7秒前
Ray完成签到,获得积分10
8秒前
aaaaa发布了新的文献求助10
8秒前
Arthur完成签到,获得积分10
8秒前
过路汪汪完成签到 ,获得积分10
8秒前
ZERO完成签到,获得积分10
9秒前
小菜完成签到 ,获得积分10
9秒前
wyuanhu完成签到,获得积分10
9秒前
9秒前
DLDL完成签到,获得积分10
9秒前
9秒前
Zhang_BY完成签到 ,获得积分10
10秒前
含糊的寒梅完成签到 ,获得积分10
10秒前
GY完成签到,获得积分10
11秒前
连冷安完成签到,获得积分10
11秒前
jinkk完成签到,获得积分10
11秒前
美丽的仙人掌完成签到,获得积分10
11秒前
小胡发布了新的文献求助10
12秒前
幸福的勒完成签到,获得积分20
12秒前
刻苦的黑米完成签到,获得积分10
14秒前
qqwxp完成签到,获得积分10
14秒前
筱星完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555935
求助须知:如何正确求助?哪些是违规求助? 3131542
关于积分的说明 9391519
捐赠科研通 2831325
什么是DOI,文献DOI怎么找? 1556415
邀请新用户注册赠送积分活动 726573
科研通“疑难数据库(出版商)”最低求助积分说明 715890