脊索变位酶
序列空间
计算生物学
序列(生物学)
酶
功能(生物学)
蛋白质功能
氨基酸
变位酶
统计模型
计算机科学
分子进化
生物
生物化学
基因
人工智能
遗传学
系统发育学
数学
巴拿赫空间
纯数学
苯丙氨酸
作者
William P. Russ,Matteo Figliuzzi,Christian Stocker,Pierre Barrat-Charlaix,Michael Socolich,Peter Kast,Donald Hilvert,Rémi Monasson,Simona Cocco,Martin Weigt,Rama Ranganathan
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2020-07-24
卷期号:369 (6502): 440-445
被引量:258
标识
DOI:10.1126/science.aba3304
摘要
Learning from evolution Protein sequences contain information specifying their three-dimensional structure and function, and statistical analysis of families of sequences has been used to predict these properties. Building from sequence data, Russ et al. used statistical models that take into account conservation at amino acid positions and correlations in the evolution of pairs of amino acids to predict new artificial sequences that will have the properties of the protein family. For the chorismate mutase family of metabolic enzymes, the authors demonstrate experimentally that the artificial sequences display natural-like catalytic function. Because the models access an enormous space of diverse sequences, such evolution-based statistical approaches may guide the search for functional proteins with altered chemical activities. Science , this issue p. 440
科研通智能强力驱动
Strongly Powered by AbleSci AI